TY - JOUR
T1 - GJTD-LR
T2 - A Trainable Grouped Joint Tensor Dictionary With Low-Rank Prior for Single Hyperspectral Image Super-Resolution
AU - Liu, Cong
AU - Fan, Zhihao
AU - Zhang, Guixu
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2022
Y1 - 2022
N2 - Reconstructing a high-resolution hyperspectral image (HR-HSI) using a single low-resolution hyperspectral image (LR-HSI) is a significant technique for increasing the spatial resolution of HSIs and overcoming the physical limitation of the HSI sensor. Most single HSI super-resolution methods have achieved great success recently. However, owning to the difficulty of acquiring an HSI, the available training samples are relatively few, which will inevitably lead to relatively low performance. To address this issue, in this article, we propose a novel single HSI super-resolution method by combining a trainable grouped joint tensor dictionary and a low-rank prior (GJTD-LR). First, we design a trainable grouped joint tensor dictionary, which can build an accurate mapping relationship between training HR-HSIs and their corresponding LR-HSIs with relatively few training samples. To be specific, the training HR-HSI and LR-HSI pairs are decomposed into a joint tensor dictionary and a set of sparse coefficients using tensor-tensor product to fully preserve the spectral correlation. In addition, we apply a grouped strategy to divide the training images into several groups and learn a compact joint dictionary for each group. Second, a tensor low-rank model is forced into the reconstruction model to further capture the spatial correlation. Finally, GJTD-LR is optimized using alternating direction method of multipliers (ADMM), soft threshold algorithm, singular value decomposition, and Fourier domain transform. The experimental results on both remote sensed HSIs and indoor HSIs show the superiority of GJTD-LR to some other traditional and advanced single HSI super-resolution methods.
AB - Reconstructing a high-resolution hyperspectral image (HR-HSI) using a single low-resolution hyperspectral image (LR-HSI) is a significant technique for increasing the spatial resolution of HSIs and overcoming the physical limitation of the HSI sensor. Most single HSI super-resolution methods have achieved great success recently. However, owning to the difficulty of acquiring an HSI, the available training samples are relatively few, which will inevitably lead to relatively low performance. To address this issue, in this article, we propose a novel single HSI super-resolution method by combining a trainable grouped joint tensor dictionary and a low-rank prior (GJTD-LR). First, we design a trainable grouped joint tensor dictionary, which can build an accurate mapping relationship between training HR-HSIs and their corresponding LR-HSIs with relatively few training samples. To be specific, the training HR-HSI and LR-HSI pairs are decomposed into a joint tensor dictionary and a set of sparse coefficients using tensor-tensor product to fully preserve the spectral correlation. In addition, we apply a grouped strategy to divide the training images into several groups and learn a compact joint dictionary for each group. Second, a tensor low-rank model is forced into the reconstruction model to further capture the spatial correlation. Finally, GJTD-LR is optimized using alternating direction method of multipliers (ADMM), soft threshold algorithm, singular value decomposition, and Fourier domain transform. The experimental results on both remote sensed HSIs and indoor HSIs show the superiority of GJTD-LR to some other traditional and advanced single HSI super-resolution methods.
KW - Group joint tensor dictionary
KW - hyperspectral image (HSI) super-resolution
KW - low-rank prior
KW - tensor-tensor product
UR - https://www.scopus.com/pages/publications/85137886760
U2 - 10.1109/TGRS.2022.3204049
DO - 10.1109/TGRS.2022.3204049
M3 - 文章
AN - SCOPUS:85137886760
SN - 0196-2892
VL - 60
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5537617
ER -