GeNSeg-Net: A General Segmentation Framework for Any Nucleus in Immunohistochemistry Images

Siyuan Xu, Guannan Li, Haofei Song, Jiansheng Wang, Yan Wang, Qingli Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Immunohistochemistry (IHC) plays a crucial role in understanding disease mechanisms, diagnosing pathology and guiding treatment decisions. The precise analysis heavily depends on accurate nucleus segmentation. However, segmentation is challenging due to significant inter- and intra-nucleus variability in morphology and distribution, stemming from inherent characteristics, imaging techniques, tissue differences and other factors. While current deep learning-based methods have shown promising results, their generalization performance is limited, inevitably requiring specific training data. To address the problem, we propose a novel Ge neral framework for Nucleus Seg mentation in IHC images (GeNSeg-Net). GeNSeg-Net effectively segments nuclei across diverse tissue types and imaging techniques with high variability using a small subset for training. It comprises an enhancement model and a segmentation model. Initially, all nuclei are enhanced to a uniform morphology with distinct features by the enhancement model through generation. The subsequent segmentation task is thereby simplified, leading to higher accuracy. We design a lightweight generator and discriminator to improve both enhancement quality and computational efficiency. Extensive experiments demonstrate the effectiveness of each component within GeNSeg-Net. Compared to existing methods, GeNSeg-Net achieves state-of-the-art (SOTA) segmentation accuracy and generalization performance on both private and public datasets, while maintaining highly competitive processing speed. Code is available at https://github.com/SikangSHU/GeNSeg-Net.

Original languageEnglish
Title of host publicationMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages4475-4484
Number of pages10
ISBN (Electronic)9798400706868
DOIs
StatePublished - 28 Oct 2024
Event32nd ACM International Conference on Multimedia, MM 2024 - Melbourne, Australia
Duration: 28 Oct 20241 Nov 2024

Publication series

NameMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia

Conference

Conference32nd ACM International Conference on Multimedia, MM 2024
Country/TerritoryAustralia
CityMelbourne
Period28/10/241/11/24

Keywords

  • generative adversarial network
  • immunohistochemistry images
  • nucleus segmentation

Fingerprint

Dive into the research topics of 'GeNSeg-Net: A General Segmentation Framework for Any Nucleus in Immunohistochemistry Images'. Together they form a unique fingerprint.

Cite this