TY - CHAP
T1 - Genetic Screening of Factors in the Plant Protein Secretion
AU - Wen, Haoyu
AU - Li, Yaoyao
AU - Zhao, Qiong
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024
Y1 - 2024
N2 - The endomembrane system in plants is composed of interconnected membrane organelles that contribute to intracellular structure and function. These organelles include the endoplasmic reticulum (ER), Golgi apparatus, vacuole, trans-Golgi network, and prevacuolar compartment or multivesicular body. Through vesicle-mediated transport, secreted proteins are synthesized in the ER and subsequently transported along the secretory pathway to the vacuole or outside of cells to fulfill specialized functions. Genetic screening is a crucial method for studying plant protein secretion. It entails identifying phenotypic differences resulting from genetic mutations, such as ethyl methanesulfonate, T-DNA insertion, and RNAi, to investigate gene function and discover mutants with specific traits or gene functions. Significant progress has been achieved in the study of plant protein secretion through genetic screening. In this protocol, we provide a step-by-step guide to studying the protein secretion pathway using a genetic screen approach. We use the example of the free 1 suppressor of Arabidopsis thaliana and oil body mutants of Marchantia polymorpha. Additionally, we offer an overview of genetic screening and briefly summarize the emerging technologies in the field of protein secretion research.
AB - The endomembrane system in plants is composed of interconnected membrane organelles that contribute to intracellular structure and function. These organelles include the endoplasmic reticulum (ER), Golgi apparatus, vacuole, trans-Golgi network, and prevacuolar compartment or multivesicular body. Through vesicle-mediated transport, secreted proteins are synthesized in the ER and subsequently transported along the secretory pathway to the vacuole or outside of cells to fulfill specialized functions. Genetic screening is a crucial method for studying plant protein secretion. It entails identifying phenotypic differences resulting from genetic mutations, such as ethyl methanesulfonate, T-DNA insertion, and RNAi, to investigate gene function and discover mutants with specific traits or gene functions. Significant progress has been achieved in the study of plant protein secretion through genetic screening. In this protocol, we provide a step-by-step guide to studying the protein secretion pathway using a genetic screen approach. We use the example of the free 1 suppressor of Arabidopsis thaliana and oil body mutants of Marchantia polymorpha. Additionally, we offer an overview of genetic screening and briefly summarize the emerging technologies in the field of protein secretion research.
KW - Arabidopsis thaliana
KW - Endomembrane system
KW - Genetic screening
KW - Marchantia polymorpha
KW - Protein secretion
UR - https://www.scopus.com/pages/publications/85200939277
U2 - 10.1007/978-1-0716-4059-3_22
DO - 10.1007/978-1-0716-4059-3_22
M3 - 章节
C2 - 39115782
AN - SCOPUS:85200939277
T3 - Methods in Molecular Biology
SP - 225
EP - 239
BT - Methods in Molecular Biology
PB - Humana Press Inc.
ER -