Generating Adversarial Texts for Recurrent Neural Networks

Chang Liu, Wang Lin, Zhengfeng Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Adversarial examples have received increasing attention recently due to their significant values in evaluating and improving the robustness of deep neural networks. Existing adversarial attack algorithms have achieved good result for most images. However, those algorithms cannot be directly applied to texts as the text data is discrete in nature. In this paper, we extend two state-of-the-art attack algorithms, PGD and C&W, to craft adversarial text examples for RNN-based models. For Extend-PGD attack, it identifies the words that are important for classification by computing the Jacobian matrix of the classifier, to effectively generate adversarial text examples. For Extend-C&W attack, it utilizes regularization to minimize the alteration of the original input text. We conduct comparison experiments on two recurrent neural networks trained for classifying texts in two real-world datasets. Experimental results show that our Extend-PGD and Extend-C&W attack algorithms have advantages of attack success rate and semantics-preserving ability, respectively.

Original languageEnglish
Title of host publicationArtificial Neural Networks and Machine Learning – ICANN 2020 - 29th International Conference on Artificial Neural Networks, Proceedings
EditorsIgor Farkaš, Paolo Masulli, Stefan Wermter
PublisherSpringer Science and Business Media Deutschland GmbH
Pages39-51
Number of pages13
ISBN (Print)9783030616083
DOIs
StatePublished - 2020
Event29th International Conference on Artificial Neural Networks, ICANN 2020 - Bratislava, Slovakia
Duration: 15 Sep 202018 Sep 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12396 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference29th International Conference on Artificial Neural Networks, ICANN 2020
Country/TerritorySlovakia
CityBratislava
Period15/09/2018/09/20

Keywords

  • Adversarial text
  • C&W
  • PGD
  • Recurrent neural network

Fingerprint

Dive into the research topics of 'Generating Adversarial Texts for Recurrent Neural Networks'. Together they form a unique fingerprint.

Cite this