From Alignment to Assignment: Frustratingly Simple Unsupervised Entity Alignment

Xin Mao, Wenting Wang, Yuanbin Wu, Man Lan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

59 Scopus citations

Abstract

Cross-lingual entity alignment (EA) aims to find the equivalent entities between cross-lingual KGs (Knowledge Graphs), which is a crucial step for integrating KGs. Recently, many GNN-based EA methods are proposed and show decent performance improvements on several public datasets. However, existing GNN-based EA methods inevitably inherit poor interpretability and low efficiency from neural networks. Motivated by the isomorphic assumption of GNN-based methods, we successfully transform the cross-lingual EA problem into an assignment problem. Based on this re-definition, we propose a frustratingly Simple but Effective Unsupervised entity alignment method (SEU) without neural networks. Extensive experiments have been conducted to show that our proposed unsupervised approach even beats advanced supervised methods across all public datasets while having high efficiency, interpretability, and stability.

Original languageEnglish
Title of host publicationEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings
PublisherAssociation for Computational Linguistics (ACL)
Pages2843-2853
Number of pages11
ISBN (Electronic)9781955917094
DOIs
StatePublished - 2021
Event2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 - Hybrid, Punta Cana, Dominican Republic
Duration: 7 Nov 202111 Nov 2021

Publication series

NameEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021
Country/TerritoryDominican Republic
CityHybrid, Punta Cana
Period7/11/2111/11/21

Fingerprint

Dive into the research topics of 'From Alignment to Assignment: Frustratingly Simple Unsupervised Entity Alignment'. Together they form a unique fingerprint.

Cite this