TY - GEN
T1 - Fractional Correspondence Framework in Detection Transformer
AU - Zareapoor, Masoumeh
AU - Shamsolmoali, Pourya
AU - Zhou, Huiyu
AU - Lu, Yue
AU - García, Salvador
N1 - Publisher Copyright:
© 2024 ACM.
PY - 2024/10/28
Y1 - 2024/10/28
N2 - The Detection Transformer (DETR), by incorporating the Hungarian algorithm, has significantly simplified the matching process in object detection tasks. This algorithm facilitates optimal one-to-one matching of predicted bounding boxes to ground-truth annotations during training. While effective, this strict matching process does not inherently account for the varying densities and distributions of objects, leading to suboptimal correspondences such as failing to handle multiple detections of the same object or missing small objects. To address this, we propose the Regularized Transport Plan (RTP). RTP introduces a flexible matching strategy that captures the cost of aligning predictions with ground truths to find the most accurate correspondences between these sets. By utilizing the differentiable Sinkhorn algorithm, RTP allows for soft, fractional matching rather than strict one-to-one assignments. This approach enhances the model's capability to manage varying object densities and distributions effectively. Our extensive evaluations on the MS-COCO and VOC benchmarks demonstrate the effectiveness of our approach. RTP-DETR, surpassing the performance of the Deform-DETR and the recently introduced DINO-DETR, achieving absolute gains in mAP of +3.8% and +1.7%, respectively.
AB - The Detection Transformer (DETR), by incorporating the Hungarian algorithm, has significantly simplified the matching process in object detection tasks. This algorithm facilitates optimal one-to-one matching of predicted bounding boxes to ground-truth annotations during training. While effective, this strict matching process does not inherently account for the varying densities and distributions of objects, leading to suboptimal correspondences such as failing to handle multiple detections of the same object or missing small objects. To address this, we propose the Regularized Transport Plan (RTP). RTP introduces a flexible matching strategy that captures the cost of aligning predictions with ground truths to find the most accurate correspondences between these sets. By utilizing the differentiable Sinkhorn algorithm, RTP allows for soft, fractional matching rather than strict one-to-one assignments. This approach enhances the model's capability to manage varying object densities and distributions effectively. Our extensive evaluations on the MS-COCO and VOC benchmarks demonstrate the effectiveness of our approach. RTP-DETR, surpassing the performance of the Deform-DETR and the recently introduced DINO-DETR, achieving absolute gains in mAP of +3.8% and +1.7%, respectively.
KW - matching problem
KW - object detection
KW - sinkhorn algorithm
UR - https://www.scopus.com/pages/publications/85209791806
U2 - 10.1145/3664647.3681613
DO - 10.1145/3664647.3681613
M3 - 会议稿件
AN - SCOPUS:85209791806
T3 - MM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
SP - 5498
EP - 5506
BT - MM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 32nd ACM International Conference on Multimedia, MM 2024
Y2 - 28 October 2024 through 1 November 2024
ER -