Fine-Grained Scene Image Classification with Modality-Agnostic Adapter

Yiqun Wang, Zhao Zhou, Xiangcheng Du, Xingjiao Wu, Yingbin Zheng, Cheng Jin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

When dealing with the task of fine-grained scene image classification, most previous works lay much emphasis on global visual features when doing multi-modal feature fusion. In other words, models are deliberately designed based on prior intuitions about the importance of different modalities. In this paper, we present a new multi-modal feature fusion approach named MAA (Modality-Agnostic Adapter), trying to make the model learn the importance of different modalities in different cases adaptively, without giving a prior setting in the model architecture. More specifically, we eliminate the modal differences in distribution and then use a modality-agnostic Transformer encoder for a semantic-level feature fusion. Our experiments demonstrate that MAA achieves state-of-the-art results on benchmarks by applying the same modalities with previous methods. Besides, it is worth mentioning that new modalities can be easily added when using MAA and further boost the performance.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Multimedia and Expo, ICME 2024
PublisherIEEE Computer Society
ISBN (Electronic)9798350390155
DOIs
StatePublished - 2024
Externally publishedYes
Event2024 IEEE International Conference on Multimedia and Expo, ICME 2024 - Niagra Falls, Canada
Duration: 15 Jul 202419 Jul 2024

Publication series

NameProceedings - IEEE International Conference on Multimedia and Expo
ISSN (Print)1945-7871
ISSN (Electronic)1945-788X

Conference

Conference2024 IEEE International Conference on Multimedia and Expo, ICME 2024
Country/TerritoryCanada
CityNiagra Falls
Period15/07/2419/07/24

Keywords

  • Fine-grained scene image classification
  • Transformer encoder
  • multimodal feature fusion

Fingerprint

Dive into the research topics of 'Fine-Grained Scene Image Classification with Modality-Agnostic Adapter'. Together they form a unique fingerprint.

Cite this