TY - GEN
T1 - Farewell to Mutual Information
T2 - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
AU - Tian, Xudong
AU - Zhang, Zhizhong
AU - Lin, Shaohui
AU - Qu, Yanyun
AU - Xie, Yuan
AU - Ma, Lizhuang
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - The Information Bottleneck (IB) provides an information theoretic principle for representation learning, by retaining all information relevant for predicting label while minimizing the redundancy. Though IB principle has been applied to a wide range of applications, its optimization remains a challenging problem which heavily relies on the accurate estimation of mutual information. In this paper, we present a new strategy, Variational Self-Distillation (VSD), which provides a scalable, flexible and analytic solution to essentially fitting the mutual information but without explicitly estimating it. Under rigorously theoretical guarantee, VSD enables the IB to grasp the intrinsic correlation between representation and label for supervised training. Furthermore, by extending VSD to multi-view learning, we introduce two other strategies, Variational Cross-Distillation (VCD) and Variational Mutual-Learning (VML), which significantly improve the robustness of representation to view-changes by eliminating view-specific and task-irrelevant information. To verify our theoretically grounded strategies, we apply our approaches to cross-modal person Re-ID, and conduct extensive experiments, where the superior performance against state-of-the-art methods are demonstrated. Our intriguing findings highlight the need to rethink the way to estimate mutual information.
AB - The Information Bottleneck (IB) provides an information theoretic principle for representation learning, by retaining all information relevant for predicting label while minimizing the redundancy. Though IB principle has been applied to a wide range of applications, its optimization remains a challenging problem which heavily relies on the accurate estimation of mutual information. In this paper, we present a new strategy, Variational Self-Distillation (VSD), which provides a scalable, flexible and analytic solution to essentially fitting the mutual information but without explicitly estimating it. Under rigorously theoretical guarantee, VSD enables the IB to grasp the intrinsic correlation between representation and label for supervised training. Furthermore, by extending VSD to multi-view learning, we introduce two other strategies, Variational Cross-Distillation (VCD) and Variational Mutual-Learning (VML), which significantly improve the robustness of representation to view-changes by eliminating view-specific and task-irrelevant information. To verify our theoretically grounded strategies, we apply our approaches to cross-modal person Re-ID, and conduct extensive experiments, where the superior performance against state-of-the-art methods are demonstrated. Our intriguing findings highlight the need to rethink the way to estimate mutual information.
UR - https://www.scopus.com/pages/publications/85172692808
U2 - 10.1109/CVPR46437.2021.00157
DO - 10.1109/CVPR46437.2021.00157
M3 - 会议稿件
AN - SCOPUS:85172692808
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 1522
EP - 1531
BT - Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PB - IEEE Computer Society
Y2 - 19 June 2021 through 25 June 2021
ER -