Fairness-aware task assignment in spatial crowdsourcing: Game-theoretic approaches

Yan Zhao, Kai Zheng, Jiannan Guo, Bin Yang, Torben Bach Pedersen, Christian S. Jensen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

78 Scopus citations

Abstract

The widespread diffusion of smartphones offers a capable foundation for the deployment of Spatial Crowdsourcing (SC), where mobile users, called workers, perform location- dependent tasks assigned to them. A key issue in SC is how best to assign tasks, e.g., the delivery of food and packages, to appropriate workers. Specifically, we study the problem of Fairness-aware Task Assignment (FTA) in SC, where tasks are to be assigned in a manner that achieves some notion of fairness across workers. In particular, we aim to minimize the payoff difference among workers while maximizing the average worker payoff. To solve the problem, we first generate so-called Valid Delivery Point Sets (VDPSs) for each worker according to an approach that exploits dynamic programming and distance- constrained pruning. Next, we show that FTA is NP-hard and proceed to propose two heuristic algorithms, a Fairness-aware Game-Theoretic (FGT) algorithm and an Improved Evolutionary Game-Theoretic (IEGT) algorithm. More specifically, we formulate FTA as a multi-player game. In this setting, the FGT approach represents a best-response method with sequential and asynchronous updates of workers' strategies, given by the VDPSs, that achieves a satisfying task assignment when a pure Nash equilibrium is reached. Next, the IEGT approach considers a setting with a large population of workers that repeatedly engage in strategic interactions. The IEGT approach exploits replicator dynamics that cause the whole population to evolve and choose better resources, i.e., VDPSs. Using the property of evolutionary equilibrium, a satisfying task assignment is obtained that corresponds to a stable state with similar payoffs among workers and good average worker payoff. Extensive experiments offer insight into the effectiveness and efficiency of the proposed solutions.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021
PublisherIEEE Computer Society
Pages265-276
Number of pages12
ISBN (Electronic)9781728191843
DOIs
StatePublished - Apr 2021
Externally publishedYes
Event37th IEEE International Conference on Data Engineering, ICDE 2021 - Virtual, Chania, Greece
Duration: 19 Apr 202122 Apr 2021

Publication series

NameProceedings - International Conference on Data Engineering
Volume2021-April
ISSN (Print)1084-4627
ISSN (Electronic)2375-0286

Conference

Conference37th IEEE International Conference on Data Engineering, ICDE 2021
Country/TerritoryGreece
CityVirtual, Chania
Period19/04/2122/04/21

Keywords

  • Fairness
  • Game theory
  • Spatial crowdsourcing
  • Task assignment

Fingerprint

Dive into the research topics of 'Fairness-aware task assignment in spatial crowdsourcing: Game-theoretic approaches'. Together they form a unique fingerprint.

Cite this