Abstract
This paper reports the fabrication of a highly sensitive and reusable substrate for surface-enhanced Raman scattering (SERS) analysis. Core-shell metal-organic framework (MOF; HKUST-1)@Ag nanoparticles (NPs) are prepared on a screen-printed carbon electrode (SPCE) via in situ electrodeposition. The morphology and Ag coverage of core-shell structures can be easily controlled by electrodeposition potential and time without substrate motion. The HKUST-1(Cu)@Ag composites combine abundant SERS "hot spots" among the high-density Ag NPs and the excellent adsorption performance of the MOF, resulting in effective pre-concentration of analytes in close proximity to these "hot spots" and enhancement of SERS sensitivity. The optimized polyhedral HKUST-1@Ag structures exhibit high SERS activity for detecting 4-aminothiophenol at a concentration as low as 5 × 10-10 M. More importantly, the polyhedral HKUST-1@Ag composites provide high sensitivity for detection of polycyclic aromatic hydrocarbons (PAHs) while preserving the cyclability and selectivity required for reliable quantitative analysis. The method is effective over a wide range of PAH concentrations (0.5 nM to 0.5 M), with detection limits as low as hundreds of pM. This study offers a new method to tailor the structure of MOF-based SERS substrates for on-site screening or point-of-care applications.
| Original language | English |
|---|---|
| Pages (from-to) | 14108-14117 |
| Number of pages | 10 |
| Journal | Journal of Materials Chemistry A |
| Volume | 7 |
| Issue number | 23 |
| DOIs | |
| State | Published - 2019 |
| Externally published | Yes |