Facial landmark detection under large pose

Yangyang Hao, Hengliang Zhu, Zhiwen Shao, Xin Tan, Lizhuang Ma

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Facial landmark detection is a necessary step in many vision tasks and plenty of excellent methods have been proposed to solve this problem. However, for the conditions with large pose and complex expression, these works usually suffer an eclipse. In this paper, we propose a two-stage cascade regression framework using patch-difference features to overcome the above problem. In the first stage, by applying the patch-difference feature and augmenting the large pose samples to the classical shape regression model, salient landmarks (eye centers, nose, mouth corners) can be located precisely. In the second stage, by applying enhanced feature section constraint to the patch-difference feature, multi-landmark detection is achieved. Experimental results show that our algorithm has a significant improvement compared to the classical shape regression method and achieves superior results on COFW dataset.

Original languageEnglish
Title of host publicationNeural Information Processing - 25th International Conference, ICONIP 2018, Proceedings
EditorsSeiichi Ozawa, Andrew Chi Sing Leung, Long Cheng
PublisherSpringer Verlag
Pages684-696
Number of pages13
ISBN (Print)9783030042110
DOIs
StatePublished - 2018
Event25th International Conference on Neural Information Processing, ICONIP 2018 - Siem Reap, Cambodia
Duration: 13 Dec 201816 Dec 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11304 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Neural Information Processing, ICONIP 2018
Country/TerritoryCambodia
CitySiem Reap
Period13/12/1816/12/18

Keywords

  • Facial landmark detection
  • Feature section constraint
  • Large pose
  • Patch-difference feature

Fingerprint

Dive into the research topics of 'Facial landmark detection under large pose'. Together they form a unique fingerprint.

Cite this