Face alignment by deep convolutional network with adaptive learning rate

Zhiwen Shao, Shouhong Ding, Hengliang Zhu, Chengjie Wang, Lizhuang Ma

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Deep convolutional network has been widely used in face recognition while not often used in face alignment. One of the most important reasons of this is the lack of training images annotated with landmarks due to fussy and time-consuming annotation work. To overcome this problem, we propose a novel data augmentation strategy. And we design an innovative training algorithm with adaptive learning rate for two iterative procedures, which helps the network to search an optimal solution. Our convolutional network can learn global high-level features and directly predict the coordinates of facial landmarks. Extensive evaluations show that our approach outperforms state-of-the-art methods especially in the condition of complex occlusion, pose, illumination and expression variations.

Original languageEnglish
Title of host publication2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1283-1287
Number of pages5
ISBN (Electronic)9781479999880
DOIs
StatePublished - 18 May 2016
Externally publishedYes
Event41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China
Duration: 20 Mar 201625 Mar 2016

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2016-May
ISSN (Print)1520-6149

Conference

Conference41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
Country/TerritoryChina
CityShanghai
Period20/03/1625/03/16

Keywords

  • Deep convolutional network
  • adaptive learning rate
  • data augmentation

Fingerprint

Dive into the research topics of 'Face alignment by deep convolutional network with adaptive learning rate'. Together they form a unique fingerprint.

Cite this