Abstract
In account of the energy gap law, the development of efficient narrow-band gap thermally activated delayed fluorescence (TADF) materials remains a major challenge for the application of organic light-emitting diodes (OLEDs). The orange-red TADF materials are commonly designed with either large π-conjugated systems or strong intramolecular donor-acceptor (D-A) interactions for red-shift emission and small singlet-triplet energy gap (ΔEST). There are rare reports on the simultaneous incorporation of these two strategies on the same material systems. Herein, two orange-red emitters named 1P2D-BP and 2P2D-DQ have been designed by extending the conjugation degree of the center acceptor DQ and increasing the number distribution of the peripheral donor PXZ units, respectively. The emission peak of 1P2D-BP is red-shifted to 615 nm compared to 580 nm for 2P2D-DQ, revealing the pronounced effect of the conjugation extension on the emission band gap. In addition, the distorted molecular structure yields a small ΔEST of 0.02 eV, favoring the acquisition of a high exciton utilization through an efficient reverse intersystem crossing process. As a result, orange-red OLEDs with both 1P2D-BP and 2P2D-DQ have achieved an external quantum efficiency (EQE) of more than 17%. In addition, the efficient white OLED based on 1P2D-BP is realized through precise exciton assignment and energy transport modulation, showing an EQE of 23.6% and a color rendering index of 82. The present work provides an important reference for the design of high-efficiency narrow-band gap materials in the field of solid-state lighting.
| Original language | English |
|---|---|
| Pages (from-to) | 16563-16572 |
| Number of pages | 10 |
| Journal | ACS Applied Materials and Interfaces |
| Volume | 16 |
| Issue number | 13 |
| DOIs | |
| State | Published - 3 Apr 2024 |
Keywords
- D-A interaction
- conjugated system
- orange-red
- organic light-emitting diodes
- thermally activated delayed fluorescence