Exploring Feature-based Knowledge Distillation for Recommender System: A Frequency Perspective

Zhangchi Zhu, Wei Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, we analyze the feature-based knowledge distillation for recommendation from the frequency perspective. By defining knowledge as different frequency components of the features, we theoretically demonstrate that regular feature-based knowledge distillation is equivalent to equally minimizing losses on all knowledge and further analyze how this equal loss weight allocation method leads to important knowledge being overlooked. In light of this, we propose to emphasize important knowledge by redistributing knowledge weights. Furthermore, we propose FreqD, a lightweight knowledge reweighting method, to avoid the computational cost of calculating losses on each knowledge. Extensive experiments demonstrate that FreqD consistently and significantly outperforms state-of-the-art knowledge distillation methods for recommender systems. Our code is available at https://github.com/woriazzc/KDs.

Original languageEnglish
Title of host publicationKDD 2025 - Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages2182-2193
Number of pages12
ISBN (Electronic)9798400712456
DOIs
StatePublished - 20 Jul 2025
Event31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2025 - Toronto, Canada
Duration: 3 Aug 20257 Aug 2025

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume1
ISSN (Print)2154-817X

Conference

Conference31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2025
Country/TerritoryCanada
CityToronto
Period3/08/257/08/25

Keywords

  • knowledge distillation
  • model compression
  • recommender system
  • retrieval efficiency

Fingerprint

Dive into the research topics of 'Exploring Feature-based Knowledge Distillation for Recommender System: A Frequency Perspective'. Together they form a unique fingerprint.

Cite this