Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation

Yikang Chen, Dehui Du, Lili Tian

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions in general settings, named Exogenous Matching. By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem, enabling its integration with existing conditional distribution modeling approaches. We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks compared to other existing importance sampling methods. We also explore the impact of injecting structural prior knowledge (counterfactual Markov boundaries) on the results. Finally, we apply this method to identifiable proxy SCMs and demonstrate the unbiasedness of the estimates, empirically illustrating the applicability of the method to practical scenarios.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 9 Dec 202415 Dec 2024

Fingerprint

Dive into the research topics of 'Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation'. Together they form a unique fingerprint.

Cite this