TY - JOUR
T1 - Estimating Sea Surface Salinity in the East China Sea Using Satellite Remote Sensing and Machine Learning
AU - Liu, Jing
AU - Bellerby, Richard G.J.
AU - Zhu, Qing
AU - Ge, Jianzhong
N1 - Publisher Copyright:
© 2023 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
PY - 2023/11
Y1 - 2023/11
N2 - Sea surface salinity (SSS) is a master variable in oceanography and important to understand marine biogeochemical and physical processes. In the East China Sea (ECS), a random forest based regression ensemble model (RF) was developed to estimate the SSS with a spatial resolution of ∼1 km based on a large synchronous data set of in situ SSS observations, MODIS-derived remote sensing reflectance (Rrs) and sea surface temperature (SST). The model showed the best performance when the Rrs(412), Rrs(488), Rrs(555), Rrs(667), SST and Julian day (JD) were used as inputs, with a root mean square error (RMSE) of 0.84, mean absolute error (MAE) of 0.31 and coefficient of determination (R2) of 0.81 for model training (N = 4,504), and a RMSE of 0.77, MAE of 0.30 and R2 of 0.86 for the model test (N = 1,153). The accuracy of the SSS model was examined using an independent data set during the period of 2020–2022 with a RMSE of 0.66 and MAE of 0.39 (N = 2,151). The interannual and seasonal signal of modeled SSS of the ECS, showed that important drivers of variability are the Changjiang discharge and the East-Asian monsoon. Applications of the model to other Chinese marginal seas (Yellow and Bohai seas) showed good agreement in distribution patterns when compared with the estimated SSS from NASA Soil Moisture Active Passive. Once more empirical oceanographic data is made available, this robust model can be applied to other regions retraining the model with informed local data sets.
AB - Sea surface salinity (SSS) is a master variable in oceanography and important to understand marine biogeochemical and physical processes. In the East China Sea (ECS), a random forest based regression ensemble model (RF) was developed to estimate the SSS with a spatial resolution of ∼1 km based on a large synchronous data set of in situ SSS observations, MODIS-derived remote sensing reflectance (Rrs) and sea surface temperature (SST). The model showed the best performance when the Rrs(412), Rrs(488), Rrs(555), Rrs(667), SST and Julian day (JD) were used as inputs, with a root mean square error (RMSE) of 0.84, mean absolute error (MAE) of 0.31 and coefficient of determination (R2) of 0.81 for model training (N = 4,504), and a RMSE of 0.77, MAE of 0.30 and R2 of 0.86 for the model test (N = 1,153). The accuracy of the SSS model was examined using an independent data set during the period of 2020–2022 with a RMSE of 0.66 and MAE of 0.39 (N = 2,151). The interannual and seasonal signal of modeled SSS of the ECS, showed that important drivers of variability are the Changjiang discharge and the East-Asian monsoon. Applications of the model to other Chinese marginal seas (Yellow and Bohai seas) showed good agreement in distribution patterns when compared with the estimated SSS from NASA Soil Moisture Active Passive. Once more empirical oceanographic data is made available, this robust model can be applied to other regions retraining the model with informed local data sets.
KW - Changjiang River discharge
KW - East China Sea
KW - random forest
KW - remote sensing reflectance
KW - sea surface salinity
KW - sea surface temperature
UR - https://www.scopus.com/pages/publications/85174971206
U2 - 10.1029/2023EA003230
DO - 10.1029/2023EA003230
M3 - 文章
AN - SCOPUS:85174971206
SN - 2333-5084
VL - 10
JO - Earth and Space Science
JF - Earth and Space Science
IS - 11
M1 - e2023EA003230
ER -