ERCI: An Explainable Experience Replay Approach with Causal Inference for Deep Reinforcement Learning

Jingwen Wang, Dehui Du, Lili Tian, Yikang Chen, Yida Li, Yi Yang Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Deep reinforcement learning (DRL) has gained significant attention in autonomous systems, yet its black-box nature and lack of explainability hinder user trust in safety-critical domains such as autonomous driving. Existing experience replay approaches enhance sample efficiency but often fail to capture the internal causality of training data, leading to a convoluted training process that is difficult for humans to explain. In this work, we introduce Experience Replay with Causal Inference (ERCI), an explainable approach that integrates time series representation and causal inference to offer human-aligned explanations for DRL. Specifically, ERCI 1) introduces a novel multivariate time series representation to extract explainable Time Series Causal Factors (TSCF) from experimental data and 2) leverages internal causality in TSCFs with causal inference as a crucial standard for experience replay in DRL training. We evaluate ERCI using multiple baseline algorithms across diverse environments. Results show that ERCI provides human-aligned explanations and further improves sample efficiency through enhanced explainability. Notably, ERCI outperforms other state-of-the-art approaches by 15% in average performance, highlighting its effectiveness and generalizability.

Original languageEnglish
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages27671-27679
Number of pages9
Edition26
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - 11 Apr 2025
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: 25 Feb 20254 Mar 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number26
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period25/02/254/03/25

Fingerprint

Dive into the research topics of 'ERCI: An Explainable Experience Replay Approach with Causal Inference for Deep Reinforcement Learning'. Together they form a unique fingerprint.

Cite this