Enhanced Sparse Model for Blind Deblurring

Liang Chen, Faming Fang, Shen Lei, Fang Li, Guixu Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

33 Scopus citations

Abstract

Existing arts have shown promising efforts to deal with the blind deblurring task. However, most of the recent works assume the additive noise involved in the blurring process to be simple-distributed (i.e. Gaussian or Laplacian), while the real-world case is proved to be much more complicated. In this paper, we develop a new term to better fit the complex natural noise. Specifically, we use a combination of a dense function (i.e. l2) and a newly designed enhanced sparse model termed as le, which is developed from two sparse models (i.e. l1 and l0), to fulfill the task. Moreover, we further suggest using le to regularize image gradients. Compared to the widely-adopted l0 sparse term, le can penalize more insignificant image details (Fig. 1). Based on the half-quadratic splitting method, we provide an effective scheme to optimize the overall formulation. Comprehensive evaluations on public datasets and real-world images demonstrate the superiority of the proposed method against state-of-the-art methods in terms of both speed and accuracy.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages631-646
Number of pages16
ISBN (Print)9783030585945
DOIs
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12370 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period23/08/2028/08/20

Keywords

  • Blind deblurring
  • Enhanced sparse model
  • Noise model

Fingerprint

Dive into the research topics of 'Enhanced Sparse Model for Blind Deblurring'. Together they form a unique fingerprint.

Cite this