Energy efficient joint scheduling and multi-core interconnect design

Cathy Qun Xu, Chun Jason Xue, Yi He, Edwin H.M. Sha

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Energy efficient and high performance interconnect is critical for multi-core architecture. Interconnect with power saving segmented buses satisfies the tight latency and high volumn data transfer needs of applications with large embeded pallelism. This paper analyzes the major energy consumption factors of interconnect with segmented buses from high level synthesis. It presents a computation and inter-core data transfer scheduling algorithm to minimize the interconnect energy consumption by addressing the analyzed factors while exploring an application's maximum parallelism. This paper jointly considers scheduling and interconnect design. It presents an application specific approach to determine the minimum number of segmented buses required and an optimal inter core data transfer schedule which can be used to configure the switches on the segmented buses to avoid bus contention and minimize interconnect energy consumption with a given application. Experimental results show that the proposed scheduling algorithm can reduce interconnect dynamic energy consumption about 71% and static energy consumption about 23% on average compared to the other communication cost conscious scheduling techniques for evaluated high parallelism DSP applications.

Original languageEnglish
Title of host publication2010 15th Asia and South Pacific Design Automation Conference, ASP-DAC 2010
Pages879-884
Number of pages6
DOIs
StatePublished - 2010
Externally publishedYes
Event2010 15th Asia and South Pacific Design Automation Conference, ASP-DAC 2010 - Taipei, Taiwan, Province of China
Duration: 18 Jan 201021 Jan 2010

Publication series

NameProceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC

Conference

Conference2010 15th Asia and South Pacific Design Automation Conference, ASP-DAC 2010
Country/TerritoryTaiwan, Province of China
CityTaipei
Period18/01/1021/01/10

Fingerprint

Dive into the research topics of 'Energy efficient joint scheduling and multi-core interconnect design'. Together they form a unique fingerprint.

Cite this