Energy-Efficient Backscatter Aided Uplink NOMA Roadside Sensor Communications Under Channel Estimation Errors

Asim Ihsan, Wen Chen, Wali Ullah Khan, Qingqing Wu, Kunlun Wang

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

This work presents non-orthogonal multiple access (NOMA) enabled energy-efficient alternating optimization framework for backscatter aided wireless powered uplink sensors communications for beyond 5G intelligent transportation system (ITS). Specifically, the transmit power of carrier emitter (CE) and reflection coefficients of backscatter aided roadside sensors are optimized with channel uncertainties for the maximization of the energy efficiency (EE) of the network. The formulated problem is tackled by the proposed two-stage alternating optimization algorithm named AOBWS (alternating optimization for backscatter aided wireless powered sensors). In the first stage, AOBWS employs an iterative algorithm to obtain optimal CE transmit power through simplified closed-form computed through Cardano's formulae. In the second stage, AOBWS uses a non-iterative algorithm that provides a closed-form expression for the computation of optimal reflection coefficient for roadside sensors under their quality of service (QoS) and a circuit power constraint. The global optimal exhaustive search (ES) algorithm is used as a benchmark. Simulation results demonstrate that the AOBWS algorithm can achieve near-optimal performance with very low complexity, which makes it suitable for practical implementations.

Original languageEnglish
Pages (from-to)4962-4974
Number of pages13
JournalIEEE Transactions on Intelligent Transportation Systems
Volume24
Issue number5
DOIs
StatePublished - 1 May 2023

Keywords

  • Sensors to infrastructure communications
  • backscatter communications
  • beyond 5G ITS
  • energy efficiency
  • imperfect channel estimation
  • power allocation
  • wireless powered roadside sensors

Fingerprint

Dive into the research topics of 'Energy-Efficient Backscatter Aided Uplink NOMA Roadside Sensor Communications Under Channel Estimation Errors'. Together they form a unique fingerprint.

Cite this