Embedding Ru Clusters and Single Atoms into Perovskite Oxide Boosts Nitrogen Fixation and Affords Ultrahigh Ammonia Yield Rate

Zhiya Han, Diana Tranca, Fermín Rodríguez-Hernández, Kaiyue Jiang, Jichao Zhang, Mingyuan He, Fu Wang, Sheng Han, Peng Wu, Xiaodong Zhuang

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Ammonia is a key chemical feedstock worldwide. Compared with the well-known Haber–Bosch method, electrocatalytic nitrogen reduction reaction (ENRR) can eventually consume less energy and have less CO2 emission. In this study, a plasma-enhanced chemical vapor deposition method is used to anchor transition metal element onto 2D conductive material. Among all attempts, Ru single-atom and Ru-cluster-embedded perovskite oxide are discovered with promising electrocatalysis performance for ENRR (NH3 yield rate of up to 137.5 ± 5.8 µg h−1 mgcat−1 and Faradaic efficiency of unexpected 56.9 ± 4.1%), reaching the top record of Ru-based catalysts reported so far. In situ experiments and density functional theory calculations confirm that the existence of Ru clusters can regulate the electronic structure of Ru single atoms and decrease the energy barrier of the first hydrogenation step (*NN to *NNH). Anchoring Ru onto various 2D perovskite oxides (LaMO-Ru, M=Cr, Mn, Co, or Ni) also show boosted ENRR performance. Not only this study provides an unique strategy toward transition-metal-anchored new 2D conductive materials, but also paves the way for fundamental understanding the correlation between cluster-involved single-atom sites and catalytic performance.

Original languageEnglish
Article number2208102
JournalSmall
Volume19
Issue number17
DOIs
StatePublished - 26 Apr 2023

Keywords

  • 2D
  • nitrogen reduction reaction
  • perovskite oxide
  • ruthenium clusters
  • single ruthenium atoms

Fingerprint

Dive into the research topics of 'Embedding Ru Clusters and Single Atoms into Perovskite Oxide Boosts Nitrogen Fixation and Affords Ultrahigh Ammonia Yield Rate'. Together they form a unique fingerprint.

Cite this