TY - JOUR
T1 - Element Diffusion Induced Carrier Transport Enhancement in High-Performance CZTSSe Self-Powered Photodetector
AU - Chen, Jiaqi
AU - Xu, Bin
AU - Ma, Hai
AU - Qi, Ruijuan
AU - Bai, Wei
AU - Yue, Fangyu
AU - Yang, Pingxiong
AU - Chen, Ye
AU - Chu, Junhao
AU - Sun, Lin
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/6/12
Y1 - 2024/6/12
N2 - Cu2ZnSn(S,Se)4 (CZTSSe) has attracted great interest in thin-film solar cells due to its excellent photoelectric performance in past decades, and recently is gradually expanding to the field of photodetectors. Here, the CZTSSe self-powered photodetector is prepared by using traditional photovoltaic device structure. Under zero bias, it exhibits the excellent performance with a maximum responsivity of 0.77 A W−1, a high detectivity of 8.78 × 1012 Jones, and a wide linear dynamic range of 103 dB. Very fast response speed with the rise/decay times of 0.576/1.792 µs, and ultra-high switching ratio of 3.54 × 105 are obtained. Comprehensive electrical and microstructure characterizations confirm that element diffusion among ITO, CdS, and CZTSSe layers not only optimizes band alignment of CdS/CZTSSe, but also suppresses the formation of interface defects. Such a suppression of interface defects and spike-like band alignment significantly inhibit carrier nonradiative recombination at interface and promote carrier transport capability. The low trap density in CZTSSe and low back contact barrier of CZTSSe/Mo could be responsible for the very fast response time of photodetector. This work definitely provides guidance for designing a high performance self-powered photodetector with high photoresponse, high switching ratio, fast response speed, and broad linear dynamic range.
AB - Cu2ZnSn(S,Se)4 (CZTSSe) has attracted great interest in thin-film solar cells due to its excellent photoelectric performance in past decades, and recently is gradually expanding to the field of photodetectors. Here, the CZTSSe self-powered photodetector is prepared by using traditional photovoltaic device structure. Under zero bias, it exhibits the excellent performance with a maximum responsivity of 0.77 A W−1, a high detectivity of 8.78 × 1012 Jones, and a wide linear dynamic range of 103 dB. Very fast response speed with the rise/decay times of 0.576/1.792 µs, and ultra-high switching ratio of 3.54 × 105 are obtained. Comprehensive electrical and microstructure characterizations confirm that element diffusion among ITO, CdS, and CZTSSe layers not only optimizes band alignment of CdS/CZTSSe, but also suppresses the formation of interface defects. Such a suppression of interface defects and spike-like band alignment significantly inhibit carrier nonradiative recombination at interface and promote carrier transport capability. The low trap density in CZTSSe and low back contact barrier of CZTSSe/Mo could be responsible for the very fast response time of photodetector. This work definitely provides guidance for designing a high performance self-powered photodetector with high photoresponse, high switching ratio, fast response speed, and broad linear dynamic range.
KW - CuZnSn(S,Se)
KW - carrier transport
KW - element diffusion
KW - interface defects
KW - self-powered photodetectors
UR - https://www.scopus.com/pages/publications/85181455299
U2 - 10.1002/smll.202307347
DO - 10.1002/smll.202307347
M3 - 文章
C2 - 38191777
AN - SCOPUS:85181455299
SN - 1613-6810
VL - 20
JO - Small
JF - Small
IS - 24
M1 - 2307347
ER -