TY - JOUR
T1 - Electric double layer effect in a nano-scale SiO2 sacrificial layer etching process and its application in nanowire fabrication
AU - Gong, Yibin
AU - Dai, Pengfei
AU - Gao, Anran
AU - Li, Tie
AU - Zhou, Ping
AU - Wang, Yuelin
PY - 2010/9/21
Y1 - 2010/9/21
N2 - Process controllability has become one of the key factors for utilizing micro-scale processes in nanofabrication. Sacrificial layer technology especially should be carefully handled to avoid excessive etching of nano-scale device structures. In this work, the etching behavior of a buffered HF (BHF) solution for thermally-grown silicon dioxide sacrificial layers with thicknesses in the range of 22 to 112.7 nm was characterized. For the first time, accelerated limiting of etching was reported for sub-50 nm layers. However, for thicker ones (more than 50 nm), almost constant rate isotropic etching was observed. A detailed discussion revealed that the conventional diffusion-induced etching model was no longer valid in such a minute structure, and the electric double layer (EDL) effect instead, was likely to dominate. Simulation was carried out to investigate the influence of the electric potential generated by an interfacial charge layer upon reactive ions in the etchant, which was proved to be consistent with the experimental results. By using such nano-scale sacrificial layer technology, combined with anisotropic silicon etching, cost-effective and stable production of silicon nanowires (SiNWs) was accomplished, with a uniform width down to 100 nm, respectively. Reliable electrical connection was also achieved by smooth transitions from the nanowire to single crystal silicon electrodes, which further confirmed the potential of this highly controllable process.
AB - Process controllability has become one of the key factors for utilizing micro-scale processes in nanofabrication. Sacrificial layer technology especially should be carefully handled to avoid excessive etching of nano-scale device structures. In this work, the etching behavior of a buffered HF (BHF) solution for thermally-grown silicon dioxide sacrificial layers with thicknesses in the range of 22 to 112.7 nm was characterized. For the first time, accelerated limiting of etching was reported for sub-50 nm layers. However, for thicker ones (more than 50 nm), almost constant rate isotropic etching was observed. A detailed discussion revealed that the conventional diffusion-induced etching model was no longer valid in such a minute structure, and the electric double layer (EDL) effect instead, was likely to dominate. Simulation was carried out to investigate the influence of the electric potential generated by an interfacial charge layer upon reactive ions in the etchant, which was proved to be consistent with the experimental results. By using such nano-scale sacrificial layer technology, combined with anisotropic silicon etching, cost-effective and stable production of silicon nanowires (SiNWs) was accomplished, with a uniform width down to 100 nm, respectively. Reliable electrical connection was also achieved by smooth transitions from the nanowire to single crystal silicon electrodes, which further confirmed the potential of this highly controllable process.
UR - https://www.scopus.com/pages/publications/78049349518
U2 - 10.1088/0960-1317/20/10/105021
DO - 10.1088/0960-1317/20/10/105021
M3 - 文章
AN - SCOPUS:78049349518
SN - 0960-1317
VL - 20
JO - Journal of Micromechanics and Microengineering
JF - Journal of Micromechanics and Microengineering
IS - 10
M1 - 105021
ER -