Efficient Sampling Algorithms for Approximate Temporal Motif Counting

Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, Kian Lee Tan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

26 Scopus citations

Abstract

A great variety of complex systems ranging from user interactions in communication networks to transactions in financial markets can be modeled as temporal graphs, which consist of a set of vertices and a series of timestamped and directed edges. Temporal motifs in temporal graphs are generalized from subgraph patterns in static graphs which take into account edge orderings and durations in addition to structures. Counting the number of occurrences of temporal motifs is a fundamental problem for temporal network analysis. However, existing methods either cannot support temporal motifs or suffer from performance issues. In this paper, we focus on approximate temporal motif counting via random sampling. We first propose a generic edge sampling (ES) algorithm for estimating the number of instances of any temporal motif. Furthermore, we devise an improved EWS algorithm that hybridizes edge sampling with wedge sampling for counting temporal motifs with 3 vertices and 3 edges. We provide comprehensive analyses of the theoretical bounds and complexities of our proposed algorithms. Finally, we conduct extensive experiments on several real-world datasets, and the results show that our ES and EWS algorithms have higher efficiency, better accuracy, and greater scalability than the state-of-the-art sampling method for temporal motif counting.

Original languageEnglish
Title of host publicationCIKM 2020 - Proceedings of the 29th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages1505-1514
Number of pages10
ISBN (Electronic)9781450368599
DOIs
StatePublished - 19 Oct 2020
Externally publishedYes
Event29th ACM International Conference on Information and Knowledge Management, CIKM 2020 - Virtual, Online, Ireland
Duration: 19 Oct 202023 Oct 2020

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference29th ACM International Conference on Information and Knowledge Management, CIKM 2020
Country/TerritoryIreland
CityVirtual, Online
Period19/10/2023/10/20

Keywords

  • motif counting
  • random sampling
  • temporal networks

Fingerprint

Dive into the research topics of 'Efficient Sampling Algorithms for Approximate Temporal Motif Counting'. Together they form a unique fingerprint.

Cite this