TY - JOUR
T1 - Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense)
AU - Li, Yiming
AU - Liu, Zhiquan
AU - Yang, Yuan
AU - Jiang, Qichen
AU - Wu, Donglei
AU - Huang, Youhui
AU - Jiao, Yang
AU - Chen, Qiang
AU - Huang, Yinying
AU - Zhao, Yunlong
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Nanoplastics are common pollutants in aquatic environments and have attracted widespread research attention. However, few studies focus on the effects of nanoplastic exposure on energy metabolism in crustaceans. Accordingly, we exposed juvenile oriental river prawns (Macrobrachium nipponense) to different concentrations of 75-nm polystyrene nanoplastics (0, 5, 10, 20, and 40 mg/L) for 7, 14, 21, or 28 days. Thereafter, the effects of nanoplastic exposure on metabolite content, energy metabolism-related enzyme activity, and gene expression were evaluated. Our results showed that (1) with increasing nanoplastic concentration and exposure time, the survival rate decreased, while weight gain rate and molting number increased and then decreased; glycogen, triglyceride, and total cholesterol content all declined while lactic acid content increased with higher exposure to nanoplastic concentrations; (2) the activities of acetyl-CoA carboxylase (ACC), hexokinase (HK), carnitine palmitoyl transferase-1, pyruvate kinase (PK), lipase, and fatty acid synthase tended to decrease, while the activity of lactate dehydrogenase (LDH) increased. In particular, the activity of 6-phosphofructokinase exposed to 5 mg/L nanoplastics increased significantly (P < 0.05). (3) Expression of the metabolism-related genes 6-phosphate glucokinase (G-6-Pase), HK, PK, ACC, Acetyl-CoA-binding protein (ACBP), CPT-1, and fatty-acid-binding protein 10 (FABP 10) increased and then decreased, while expression of the LDH gene showed an upward trend. These results indicate that nanoplastics affect growth, enzyme activity, and the gene expression of energy metabolism in M. nipponense, and that high concentrations of nanoplastics have a negative impact on energy metabolism.
AB - Nanoplastics are common pollutants in aquatic environments and have attracted widespread research attention. However, few studies focus on the effects of nanoplastic exposure on energy metabolism in crustaceans. Accordingly, we exposed juvenile oriental river prawns (Macrobrachium nipponense) to different concentrations of 75-nm polystyrene nanoplastics (0, 5, 10, 20, and 40 mg/L) for 7, 14, 21, or 28 days. Thereafter, the effects of nanoplastic exposure on metabolite content, energy metabolism-related enzyme activity, and gene expression were evaluated. Our results showed that (1) with increasing nanoplastic concentration and exposure time, the survival rate decreased, while weight gain rate and molting number increased and then decreased; glycogen, triglyceride, and total cholesterol content all declined while lactic acid content increased with higher exposure to nanoplastic concentrations; (2) the activities of acetyl-CoA carboxylase (ACC), hexokinase (HK), carnitine palmitoyl transferase-1, pyruvate kinase (PK), lipase, and fatty acid synthase tended to decrease, while the activity of lactate dehydrogenase (LDH) increased. In particular, the activity of 6-phosphofructokinase exposed to 5 mg/L nanoplastics increased significantly (P < 0.05). (3) Expression of the metabolism-related genes 6-phosphate glucokinase (G-6-Pase), HK, PK, ACC, Acetyl-CoA-binding protein (ACBP), CPT-1, and fatty-acid-binding protein 10 (FABP 10) increased and then decreased, while expression of the LDH gene showed an upward trend. These results indicate that nanoplastics affect growth, enzyme activity, and the gene expression of energy metabolism in M. nipponense, and that high concentrations of nanoplastics have a negative impact on energy metabolism.
KW - Energy metabolism
KW - Enzyme activity
KW - Gene expression
KW - Macrobrachium nipponense
KW - Nanoplastics
UR - https://www.scopus.com/pages/publications/85095740760
U2 - 10.1016/j.envpol.2020.115890
DO - 10.1016/j.envpol.2020.115890
M3 - 文章
C2 - 33176947
AN - SCOPUS:85095740760
SN - 0269-7491
VL - 268
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 115890
ER -