ECNU at SemEval-2017 Task 5: An Ensemble of Regression Algorithms with Effective Features for Fine-Grained Sentiment Analysis in Financial Domain

Mengxiao Jiang, Man Lan, Yuanbin Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

25 Scopus citations

Abstract

This paper describes our systems submitted to the Fine-Grained Sentiment Analysis on Financial Microblogs and News task (i.e., Task 5) in SemEval-2017. This task includes two subtasks in microblogs and news headline domain respectively. To settle this problem, we extract four types of effective features, including linguistic features, sentiment lexicon features, domain-specific features and word embedding features. Then we employ these features to construct models by using ensemble regression algorithms. Our submissions rank 1st and rank 5th in subtask 1 and subtask 2 respectively.

Original languageEnglish
Title of host publicationACL 2017 - 11th International Workshop on Semantic Evaluations, SemEval 2017, Proceedings of the Workshop
PublisherAssociation for Computational Linguistics (ACL)
Pages888-893
Number of pages6
ISBN (Electronic)9781945626555
DOIs
StatePublished - 2017
Event11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 - Vancouver, Canada
Duration: 3 Aug 20174 Aug 2017

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

Conference11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
Country/TerritoryCanada
CityVancouver
Period3/08/174/08/17

Fingerprint

Dive into the research topics of 'ECNU at SemEval-2017 Task 5: An Ensemble of Regression Algorithms with Effective Features for Fine-Grained Sentiment Analysis in Financial Domain'. Together they form a unique fingerprint.

Cite this