TY - JOUR
T1 - Early Mitochondrial Adaptations in Skeletal Muscle to Obesity and Obesity Resistance Differentially Regulated by High-Fat Diet
AU - Sun, Jingyu
AU - Huang, Tao
AU - Qi, Zhengtang
AU - You, Songhui
AU - Dong, Jingmei
AU - Zhang, Chen
AU - Qin, Lili
AU - Zhou, Yunhe
AU - Ding, Shuzhe
PY - 2017/9/1
Y1 - 2017/9/1
N2 - Objective The mechanism for different susceptibilities to obesity after short-term high-fat diet (HFD) feeding is largely unknown. Given the close association between obesity occurrence and mitochondrial dysfunction, the early events in skeletal muscle mitochondrial adaptations between HFD-induced obesity (DIO) and HFD-induced obesity resistant (DIO-R) lean phenotype under excess nutritional environment were explored. Methods ICR/JCL male mice were randomly divided into 2 groups, as follows: low-fat diet (LFD) and HFD groups. After 6 weeks on HFD, HFD-fed mice were classified as DIO or DIO-R according to their body weight gain. Serum parameters, oxidative stress biomarkers, the activation of AMPK/ACC axis, and the expression profiles of mitochondrial biogenesis were measured by using corresponding methods among the LFD control, DIO, and DIO-R groups. Results Serum glucose, total cholesterol, low-density lipoprotein, and high-density lipoprotein levels were significantly increased in DIO and DIO-R mice compared with LFD controls. However, DIO-R mice had significantly higher MDA levels and exhibited a significantly higher level of AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inactivation than DIO mice. Furthermore, the transcript and protein levels of transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) and estrogen-related receptor-α (ERRα) in DIO-R mice were significantly up-regulated compared with the DIO mice. Conclusions Although the body weight gain differed, the DIO and DIO-R mice had similar metabolic disturbance of glucose and lipids after short-term HFD consumption. The diverse alterations on fatty acid oxidation and mitochondrial biogenesis pathway induced by AMPK activation might be involved in different susceptibilities to obesity when consuming HFD.
AB - Objective The mechanism for different susceptibilities to obesity after short-term high-fat diet (HFD) feeding is largely unknown. Given the close association between obesity occurrence and mitochondrial dysfunction, the early events in skeletal muscle mitochondrial adaptations between HFD-induced obesity (DIO) and HFD-induced obesity resistant (DIO-R) lean phenotype under excess nutritional environment were explored. Methods ICR/JCL male mice were randomly divided into 2 groups, as follows: low-fat diet (LFD) and HFD groups. After 6 weeks on HFD, HFD-fed mice were classified as DIO or DIO-R according to their body weight gain. Serum parameters, oxidative stress biomarkers, the activation of AMPK/ACC axis, and the expression profiles of mitochondrial biogenesis were measured by using corresponding methods among the LFD control, DIO, and DIO-R groups. Results Serum glucose, total cholesterol, low-density lipoprotein, and high-density lipoprotein levels were significantly increased in DIO and DIO-R mice compared with LFD controls. However, DIO-R mice had significantly higher MDA levels and exhibited a significantly higher level of AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inactivation than DIO mice. Furthermore, the transcript and protein levels of transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) and estrogen-related receptor-α (ERRα) in DIO-R mice were significantly up-regulated compared with the DIO mice. Conclusions Although the body weight gain differed, the DIO and DIO-R mice had similar metabolic disturbance of glucose and lipids after short-term HFD consumption. The diverse alterations on fatty acid oxidation and mitochondrial biogenesis pathway induced by AMPK activation might be involved in different susceptibilities to obesity when consuming HFD.
KW - fatty acid oxidation
KW - high-fat diet-induced obesity
KW - high-fat diet-induced obesity resistance
KW - mitochondrial biogenesis
UR - https://www.scopus.com/pages/publications/85018325962
U2 - 10.1055/s-0043-104634
DO - 10.1055/s-0043-104634
M3 - 文章
C2 - 28444662
AN - SCOPUS:85018325962
SN - 0947-7349
VL - 125
SP - 538
EP - 546
JO - Experimental and Clinical Endocrinology and Diabetes
JF - Experimental and Clinical Endocrinology and Diabetes
IS - 8
ER -