TY - GEN
T1 - DYNAMIC-LLAVA
T2 - 13th International Conference on Learning Representations, ICLR 2025
AU - Huang, Wenxuan
AU - Zhai, Zijie
AU - Shen, Yunhang
AU - Cao, Shaosheng
AU - Zhao, Fei
AU - Xu, Xiangfeng
AU - Ye, Zheyu
AU - Lin, Shaohui
N1 - Publisher Copyright:
© 2025 13th International Conference on Learning Representations, ICLR 2025. All rights reserved.
PY - 2025
Y1 - 2025
N2 - Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by ∼75% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the ∼50% computation consumption under decoding without KV cache, while saving ∼50% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava.
AB - Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by ∼75% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the ∼50% computation consumption under decoding without KV cache, while saving ∼50% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava.
UR - https://www.scopus.com/pages/publications/105010229409
M3 - 会议稿件
AN - SCOPUS:105010229409
T3 - 13th International Conference on Learning Representations, ICLR 2025
SP - 43838
EP - 43866
BT - 13th International Conference on Learning Representations, ICLR 2025
PB - International Conference on Learning Representations, ICLR
Y2 - 24 April 2025 through 28 April 2025
ER -