DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting

Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, Bin Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

Multivariate time series forecasting is crucial for various applications, such as financial investment, energy management, weather forecasting, and traffic optimization. However, accurate forecasting is challenging due to two main factors. First, real-world time series often show heterogeneous temporal patterns caused by distribution shifts over time. Second, correlations among channels are complex and intertwined, making it hard to model the interactions among channels precisely and flexibly. In this study, we address these challenges by proposing a general framework called DUET, which introduces DU al clustering on the temporal and channel dimensions to Enhance multivariate Time series forecasting. First, we design a Temporal Clustering Module (TCM) that clusters time series into fine-grained distributions to handle heterogeneous temporal patterns. For different distribution clusters, we design various pattern extractors to capture their intrinsic temporal patterns, thus modeling the heterogeneity. Second, we introduce a novel Channel-Soft-Clustering strategy and design a Channel Clustering Module (CCM), which captures the relationships among channels in the frequency domain through metric learning and applies sparsification to mitigate the adverse effects of noisy channels. Finally, DUET combines TCM and CCM to incorporate both the temporal and channel dimensions. Extensive experiments on 25 real-world datasets from 10 application domains, demonstrate the state-of-the-art performance of DUET.

Original languageEnglish
Title of host publicationKDD 2025 - Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1185-1196
Number of pages12
ISBN (Electronic)9798400712456
DOIs
StatePublished - 20 Jul 2025
Event31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2025 - Toronto, Canada
Duration: 3 Aug 20257 Aug 2025

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume1
ISSN (Print)2154-817X

Conference

Conference31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2025
Country/TerritoryCanada
CityToronto
Period3/08/257/08/25

Keywords

  • dual-clustering
  • forecasting
  • multivariate time series

Fingerprint

Dive into the research topics of 'DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting'. Together they form a unique fingerprint.

Cite this