TY - JOUR
T1 - DNMT1 in Six2 progenitor cells is essential for transposable element silencing and kidney development
AU - Li, Szu Yuan
AU - Park, Jihwan
AU - Guan, Yuting
AU - Chung, Kiwung
AU - Shrestha, Rojesh
AU - Palmer, Matthew B.
AU - Susztak, Katalin
N1 - Publisher Copyright:
Copyright © 2019 by the American Society of Nephrology
PY - 2019/4
Y1 - 2019/4
N2 - Background Cytosine methylation of regulatory regions, such as promoters and enhancers, plays a key role in regulating gene expression, however, its role in kidney development has not been analyzed. Methods To identify functionally important epigenome-modifying enzymes and genome regions where methylation modifications are functionally important for kidney development, we performed genome-wide methylation analysis, expression profiling, and systematic genetic targeting of DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) and Ten-eleven translocation methylcytosine hydroxylases (Tet2) in nephron progenitor cells (Six2Cre) in mice. Results Genome-wide methylome analysis indicated dynamic changes on promoters and enhancers during development. Six2CreDnmt3af/f, Six2CreDnmt3bf/f, and Six2CreTet2f/f mice showed no significant structural or functional renal abnormalities. In contrast, Six2CreDnmt1f/f mice died within 24 hours of birth, from a severe kidney developmental defect. Genome-wide methylation analysis indicated a marked loss of methylation of transposable elements. RNA sequencing detected endogenous retroviral transcripts. Expression of intracellular viral sensing pathways (RIG-I), early embryonic, nonrenal lineage genes and increased cell death contributed to the phenotype development. In podocytes, loss of Dnmt1, Dnmt3a, Dnmt3b, or Tet2 did not lead to functional or structural differences at baseline or after toxic injury. Conclusions Genome-wide cytosine methylation and gene expression profiling showed that by silencing embryonic, nonrenal lineage genes and transposable elements, DNMT1-mediated cytosine methylation is essential for kidney development.
AB - Background Cytosine methylation of regulatory regions, such as promoters and enhancers, plays a key role in regulating gene expression, however, its role in kidney development has not been analyzed. Methods To identify functionally important epigenome-modifying enzymes and genome regions where methylation modifications are functionally important for kidney development, we performed genome-wide methylation analysis, expression profiling, and systematic genetic targeting of DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) and Ten-eleven translocation methylcytosine hydroxylases (Tet2) in nephron progenitor cells (Six2Cre) in mice. Results Genome-wide methylome analysis indicated dynamic changes on promoters and enhancers during development. Six2CreDnmt3af/f, Six2CreDnmt3bf/f, and Six2CreTet2f/f mice showed no significant structural or functional renal abnormalities. In contrast, Six2CreDnmt1f/f mice died within 24 hours of birth, from a severe kidney developmental defect. Genome-wide methylation analysis indicated a marked loss of methylation of transposable elements. RNA sequencing detected endogenous retroviral transcripts. Expression of intracellular viral sensing pathways (RIG-I), early embryonic, nonrenal lineage genes and increased cell death contributed to the phenotype development. In podocytes, loss of Dnmt1, Dnmt3a, Dnmt3b, or Tet2 did not lead to functional or structural differences at baseline or after toxic injury. Conclusions Genome-wide cytosine methylation and gene expression profiling showed that by silencing embryonic, nonrenal lineage genes and transposable elements, DNMT1-mediated cytosine methylation is essential for kidney development.
UR - https://www.scopus.com/pages/publications/85063954161
U2 - 10.1681/ASN.2018070687
DO - 10.1681/ASN.2018070687
M3 - 文章
C2 - 30850438
AN - SCOPUS:85063954161
SN - 1046-6673
VL - 30
SP - 594
EP - 609
JO - Journal of the American Society of Nephrology
JF - Journal of the American Society of Nephrology
IS - 4
ER -