Abstract
Controlling the deposition and diffusion of adsorbed atoms (adatoms) on the surface of a solid material is vital for engineering the shape and function of nanocrystals. Here, we report the use of single-stranded DNA (oligo-adenine, oligo-A) to encode the wettability of gold seeds by homogeneous gold adatoms to synthesize highly tunable plasmonic nanostructures. We find that the oligo-A attachment transforms the nanocrystal growth mode from the classical Frank-van der Merwe to the Volmer-Weber island growth. Finely tuning the oligo-A density can continuously change the gold-gold contact angle (θ) from 35.1±3.6° to 125.3±8.0°. We further demonstrate the versatility of this strategy for engineering nanoparticles with different curvature and dimensions. With this unconventional growth mode, we synthesize a sub-nanometer plasmonic cavity with a geometrical singularity when θ>90°. Superfocusing of light in this nanocavity produces a near-infrared intraparticle plasmonic coupling, which paves the way to surface engineering of single-particle plasmonic devices.
| Original language | English |
|---|---|
| Article number | e202210377 |
| Journal | Angewandte Chemie - International Edition |
| Volume | 61 |
| Issue number | 46 |
| DOIs | |
| State | Published - 14 Nov 2022 |
Keywords
- Adsorbed Atoms
- Gold-Gold Wettability
- Nanocrystal Synthesis
- Oligo-Adenine
- Plasmonics