TY - JOUR
T1 - Dietary melatonin positively impacts the immune system of crayfish, Cherax destructor, as revealed by comparative proteomics analysis
AU - Yang, Ying
AU - Zhu, Bihong
AU - Xu, Wenyue
AU - Tian, Jiangtao
AU - Du, Xinglin
AU - Ye, Yucong
AU - Huang, Yizhou
AU - Jiang, Qichen
AU - Li, Yiming
AU - Zhao, Yunlong
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/11
Y1 - 2023/11
N2 - Melatonin, an indoleamine with various biological activities, is being used increasingly in the aquaculture industry for its broad immune effects. Cherax destructor is an emerging economically cultured crayfish that faces many problems in the breeding process. Previous work found that dietary melatonin has positive effects on the growth and immunity of C. destructor, but the specific mechanism involved remained unclear. In this study, proteomics was used to determine the mechanism of action of melatonin in C. destructor. Results showed that dietary melatonin resulted in decreased levels of hydrogen peroxide, alanine aminotransferase, and aspartate aminotransferase, but increased levels of glutathione peroxidase, acid phosphatase, and glutathione S-transferases. In total, 608 proteins were differentially expressed (418 upregulated and 190 downregulated), and were enriched in three main categories: innate immunity (B cell receptor signaling pathway and natural killer cell-mediated cytotoxicity), glucose metabolism (pentose phosphate pathway, pentose and glucuronate interconversions, and propionate metabolism), and amino acid metabolism (valine, leucine, and isoleucine degradation, and cysteine and methionine metabolism). In addition, dietary melatonin was also involved in the regulation of the mTOR signaling pathway, and upregulated the expression of genes encoding key factors, such as Ras-related GTP-binding protein A/B, eukaryotic initiation factor 4E, eukaryotic initiation factor 4E-binding protein, and p70 ribosomal S6 kinase. Overall, this study demonstrates the role of melatonin in the physiological regulation of C. destructor, laying the foundation for the development of melatonin as a feed additive in the aquaculture of this species.
AB - Melatonin, an indoleamine with various biological activities, is being used increasingly in the aquaculture industry for its broad immune effects. Cherax destructor is an emerging economically cultured crayfish that faces many problems in the breeding process. Previous work found that dietary melatonin has positive effects on the growth and immunity of C. destructor, but the specific mechanism involved remained unclear. In this study, proteomics was used to determine the mechanism of action of melatonin in C. destructor. Results showed that dietary melatonin resulted in decreased levels of hydrogen peroxide, alanine aminotransferase, and aspartate aminotransferase, but increased levels of glutathione peroxidase, acid phosphatase, and glutathione S-transferases. In total, 608 proteins were differentially expressed (418 upregulated and 190 downregulated), and were enriched in three main categories: innate immunity (B cell receptor signaling pathway and natural killer cell-mediated cytotoxicity), glucose metabolism (pentose phosphate pathway, pentose and glucuronate interconversions, and propionate metabolism), and amino acid metabolism (valine, leucine, and isoleucine degradation, and cysteine and methionine metabolism). In addition, dietary melatonin was also involved in the regulation of the mTOR signaling pathway, and upregulated the expression of genes encoding key factors, such as Ras-related GTP-binding protein A/B, eukaryotic initiation factor 4E, eukaryotic initiation factor 4E-binding protein, and p70 ribosomal S6 kinase. Overall, this study demonstrates the role of melatonin in the physiological regulation of C. destructor, laying the foundation for the development of melatonin as a feed additive in the aquaculture of this species.
KW - Cherax destructor
KW - Immunity
KW - Melatonin
KW - Metabolism
KW - Proteomics
UR - https://www.scopus.com/pages/publications/85173210817
U2 - 10.1016/j.fsi.2023.109122
DO - 10.1016/j.fsi.2023.109122
M3 - 文章
C2 - 37777102
AN - SCOPUS:85173210817
SN - 1050-4648
VL - 142
JO - Fish and Shellfish Immunology
JF - Fish and Shellfish Immunology
M1 - 109122
ER -