TY - JOUR
T1 - Deterministic All-Optical Continuous-Variable Quantum Telecloning
AU - Lou, Yanbo
AU - Lv, Yinghui
AU - Wang, Jiabin
AU - Liu, Shengshuai
AU - Jing, Jietai
N1 - Publisher Copyright:
© 2024 American Physical Society.
PY - 2024/4/19
Y1 - 2024/4/19
N2 - Quantum telecloning, a pivotal multiuser quantum communication protocol in the realm of quantum information science, facilitates the copy of a quantum state across M distinct locations through teleportation technique. In the continuous-variable regime, the implementation of quantum telecloning necessitates the distribution of multipartite entanglement among the sender and M receiver parties. Following this, the sender carries out optic-electro conversion and transmits information via classical channel to M spatially separated receivers simultaneously. To successfully reconstruct the input state, electro-optic conversion needs to be employed by each receiver. However, due to these conversions, the bandwidth of the optical mode in this process is largely constrained. In this Letter, we present an all-optical version of the 1→2 continuous-variable quantum telecloning scheme, wherein both optic-electro and electro-optic conversions are replaced by optical components. Our scheme allows the two receivers to achieve input state reconstruction solely by utilizing beam splitters, significantly simplifying its complexity. We experimentally demonstrate all-optical 1→2 quantum telecloning of coherent state and achieve the fidelities of 58.6%±1.0% and 58.6%±1.1% for two clones, exceeding the corresponding classical limits (51.9%±0.5% and 51.9%±0.6%). Our results establish a platform for constructing a flexible all-optical multiuser quantum network and promote the field of all-optical quantum information processing.
AB - Quantum telecloning, a pivotal multiuser quantum communication protocol in the realm of quantum information science, facilitates the copy of a quantum state across M distinct locations through teleportation technique. In the continuous-variable regime, the implementation of quantum telecloning necessitates the distribution of multipartite entanglement among the sender and M receiver parties. Following this, the sender carries out optic-electro conversion and transmits information via classical channel to M spatially separated receivers simultaneously. To successfully reconstruct the input state, electro-optic conversion needs to be employed by each receiver. However, due to these conversions, the bandwidth of the optical mode in this process is largely constrained. In this Letter, we present an all-optical version of the 1→2 continuous-variable quantum telecloning scheme, wherein both optic-electro and electro-optic conversions are replaced by optical components. Our scheme allows the two receivers to achieve input state reconstruction solely by utilizing beam splitters, significantly simplifying its complexity. We experimentally demonstrate all-optical 1→2 quantum telecloning of coherent state and achieve the fidelities of 58.6%±1.0% and 58.6%±1.1% for two clones, exceeding the corresponding classical limits (51.9%±0.5% and 51.9%±0.6%). Our results establish a platform for constructing a flexible all-optical multiuser quantum network and promote the field of all-optical quantum information processing.
UR - https://www.scopus.com/pages/publications/85191543998
U2 - 10.1103/PhysRevLett.132.160803
DO - 10.1103/PhysRevLett.132.160803
M3 - 文章
C2 - 38701483
AN - SCOPUS:85191543998
SN - 0031-9007
VL - 132
JO - Physical Review Letters
JF - Physical Review Letters
IS - 16
M1 - 160803
ER -