Abstract
The combination of immune checkpoint blockade (ICB) and chemotherapy has shown significant potential in the clinical treatment of various cancers. However, circulating regeneration of PD-L1 within tumor cells greatly limits the efficiency of chemo-immunotherapy and consequent patient response rates. Herein, we report the synthesis of a nanoparticle-based PD-L1 inhibitor (FRS) with a rational design for effective endogenous PD-L1 suppression. The nanoinhibitor is achieved through self-assembly of fluoroalkylated competitive peptides that target PD-L1 palmitoylation. The FRS nanoparticles provide efficient protection and delivery of functional peptides to the cytoplasm of tumors, showing greater inhibition of PD-L1 than nonfluorinated peptidic inhibitors. Moreover, we demonstrate that FRS synergizes with chemotherapeutic doxorubicin (DOX) to boost the antitumor activities via simultaneous reduction of PD-L1 abundance and induction of immunogenic cell death in murine colon tumor models. The nano strategy of PD-L1 regulation present in this study is expected to advance the development of ICB inhibitors and overcome the limitations of conventional ICB-assisted chemo-immunotherapy.
| Original language | English |
|---|---|
| Pages (from-to) | 1690-1701 |
| Number of pages | 12 |
| Journal | ACS Nano |
| Volume | 18 |
| Issue number | 2 |
| DOIs | |
| State | Published - 16 Jan 2024 |
Keywords
- PD-L1 nanoinhibitor
- cancer chemo-immunotherapy
- drug delivery
- immune checkpoint blockade (ICB)
- peptide stability