Abstract
Fructose-1,6-bisphosphatase (FBPase), an important gluconeogenic enzyme, catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate. The effort to discover new FBPase inhibitors was carried out by high-throughput screening (HTS) of a library of 56,000 lead-like compounds, and a 2,5-diphenyl-1,3,4-oxadiazole (3a, IC 50 = 15.45 μM) which bearing no phosphate group was identified as a potential FBPase inhibitor for the first time. Structure-activity-relationship (SAR) research of a series of analogues obtained by modifying the substituent groups and replacing the 1,3,4-oxadiazole with several other heterocycles disclosed the key structure and substituent groups related to the binding with FBPase.
| Original language | English |
|---|---|
| Pages (from-to) | 2693-2712 |
| Number of pages | 20 |
| Journal | Heterocycles |
| Volume | 85 |
| Issue number | 11 |
| DOIs | |
| State | Published - 2012 |