TY - JOUR
T1 - Design and Implementation of Online Intelligent Mental Health Testing Platform
AU - Ren, Shengtao
AU - Hou, Xiangling
AU - Xi, Juzhe
N1 - Publisher Copyright:
© 2022 Shengtao Ren et al.
PY - 2022
Y1 - 2022
N2 - In order to solve the problems of high misevaluation rate and low work efficiency in the process of mental health intelligent evaluation, a method of mental health intelligent evaluation system oriented to the decision tree algorithm is proposed. First, the current research status of mental health intelligent evaluation was analyzed and the framework of mental health intelligent evaluation system was constructed. Then, the mental health intelligent evaluation data were collected and the decision tree algorithm was used to analyze and classify the mental health intelligent evaluation data to obtain the mental health intelligent evaluation results. Finally, specific simulation experiments are used to analyze the feasibility and superiority of the mental health intelligent evaluation system. The experimental results show that the recall rate of each system increases with the increasing number of iterations, and the system has the highest recall rate. Also, it is stable after the number of iterations reaches 20, with good recall and adaptive scheduling performance. The recall rate of comparison system 1 and comparison system 2 fluctuates greatly, and the recall rate is lower than that of the system in this paper. It is proved that the method of the mental health intelligent evaluation system of the decision tree algorithm can effectively solve the problem and improve the accuracy of the mental health intelligent evaluation. The efficiency of mental health intelligent evaluation is improved, and the system stability is better, which can meet the actual requirements of current mental health intelligent evaluation.
AB - In order to solve the problems of high misevaluation rate and low work efficiency in the process of mental health intelligent evaluation, a method of mental health intelligent evaluation system oriented to the decision tree algorithm is proposed. First, the current research status of mental health intelligent evaluation was analyzed and the framework of mental health intelligent evaluation system was constructed. Then, the mental health intelligent evaluation data were collected and the decision tree algorithm was used to analyze and classify the mental health intelligent evaluation data to obtain the mental health intelligent evaluation results. Finally, specific simulation experiments are used to analyze the feasibility and superiority of the mental health intelligent evaluation system. The experimental results show that the recall rate of each system increases with the increasing number of iterations, and the system has the highest recall rate. Also, it is stable after the number of iterations reaches 20, with good recall and adaptive scheduling performance. The recall rate of comparison system 1 and comparison system 2 fluctuates greatly, and the recall rate is lower than that of the system in this paper. It is proved that the method of the mental health intelligent evaluation system of the decision tree algorithm can effectively solve the problem and improve the accuracy of the mental health intelligent evaluation. The efficiency of mental health intelligent evaluation is improved, and the system stability is better, which can meet the actual requirements of current mental health intelligent evaluation.
UR - https://www.scopus.com/pages/publications/85137685831
U2 - 10.1155/2022/9270502
DO - 10.1155/2022/9270502
M3 - 文章
C2 - 36090452
AN - SCOPUS:85137685831
SN - 2040-2295
VL - 2022
JO - Journal of Healthcare Engineering
JF - Journal of Healthcare Engineering
M1 - 9270502
ER -