Derivative-free optimization via classification

Yang Yu, Hong Qian, Yi Qi Hu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

77 Scopus citations

Abstract

Many randomized heuristic derivative-free optimization methods share a framework that iteratively learns a model for promising search areas and samples solutions from the model. This paper studies a particular setting of such framework, where the model is implemented by a classification model discriminating good solutions from bad ones. This setting allows a general theoretical characterization, where critical factors to the optimization are discovered. We also prove that optimization problems with Local Lipschitz continuity can be solved in polynomial time by proper configurations of this framework. Following the critical factors, we propose the randomized coordinate shrinking classification algorithm to learn the model, forming the RACOS algorithm, for optimization in continuous and discrete domains. Experiments on the testing functions as well as on the machine learning tasks including spectral clustering and classification with Ramp loss demonstrate the effectiveness of RACOS.

Original languageEnglish
Title of host publication30th AAAI Conference on Artificial Intelligence, AAAI 2016
PublisherAAAI press
Pages2286-2292
Number of pages7
ISBN (Electronic)9781577357605
StatePublished - 2016
Externally publishedYes
Event30th AAAI Conference on Artificial Intelligence, AAAI 2016 - Phoenix, United States
Duration: 12 Feb 201617 Feb 2016

Publication series

Name30th AAAI Conference on Artificial Intelligence, AAAI 2016

Conference

Conference30th AAAI Conference on Artificial Intelligence, AAAI 2016
Country/TerritoryUnited States
CityPhoenix
Period12/02/1617/02/16

Fingerprint

Dive into the research topics of 'Derivative-free optimization via classification'. Together they form a unique fingerprint.

Cite this