TY - GEN
T1 - Delay-Optimal Task Offloading for Dynamic Fog Networks
AU - Tan, Youyu
AU - Wang, Kunlun
AU - Yang, Yang
AU - Zhou, Ming Tuo
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/5
Y1 - 2019/5
N2 - Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning resources and services to be closer for end users. Limited by the computing and storage resources, end users offload the computation-intensive tasks to the nearby fog nodes. However, due to mobility feature of the fog nodes, it's challenging to realize efficient task offloading. We rigorously formulate the task offloading problem for dynamic fog networks as an online stochastic optimization problem, and design offloading policies when the network is in stationary status and non-stationary status. When the fog network is in stationary status, we propose task offloading for the stationary status (TOS) algorithm to minimize the long-term average offloading delay. When the fog network is in non-stationary status, we propose two algorithms as task offloading for the non-stationary status using a sliding window (TON-SW) and task offloading for non-stationary status using a discount factor (TON-D) to minimize the average offloading delay. Besides, learning regret bounds of our algorithms are given. Numerical simulations show that our algorithms achieve a significant performance improvement compared to the upper-confidence bound (UCB) algorithm.
AB - Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning resources and services to be closer for end users. Limited by the computing and storage resources, end users offload the computation-intensive tasks to the nearby fog nodes. However, due to mobility feature of the fog nodes, it's challenging to realize efficient task offloading. We rigorously formulate the task offloading problem for dynamic fog networks as an online stochastic optimization problem, and design offloading policies when the network is in stationary status and non-stationary status. When the fog network is in stationary status, we propose task offloading for the stationary status (TOS) algorithm to minimize the long-term average offloading delay. When the fog network is in non-stationary status, we propose two algorithms as task offloading for the non-stationary status using a sliding window (TON-SW) and task offloading for non-stationary status using a discount factor (TON-D) to minimize the average offloading delay. Besides, learning regret bounds of our algorithms are given. Numerical simulations show that our algorithms achieve a significant performance improvement compared to the upper-confidence bound (UCB) algorithm.
UR - https://www.scopus.com/pages/publications/85070185695
U2 - 10.1109/ICC.2019.8761113
DO - 10.1109/ICC.2019.8761113
M3 - 会议稿件
AN - SCOPUS:85070185695
T3 - IEEE International Conference on Communications
BT - 2019 IEEE International Conference on Communications, ICC 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE International Conference on Communications, ICC 2019
Y2 - 20 May 2019 through 24 May 2019
ER -