Deep reinforcement learning for greenhouse climate control

Lu Wang, Xiaofeng He, Dijun Luo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

30 Scopus citations

Abstract

Worldwide, the area of greenhouse production is increasing with the rapid growth of global population and demands for fresh food. However, the greenhouse industry encounters challenges to find automatic control policy. Reinforcement Learning (RL) is a powerful tool in solving the autonomous decision making problems. In this paper, we propose a novel Deep Reinforcement Learning framework for cucumber climate control. Although some machine learning methods have been proposed to address the dynamic climate control problem, these methods have two major issues. First, they only consider the current reward (e.g., the fruit weight of the cucumber). Second, previous study only considers one control variable. However, the growth of crops are impacted by multiple factors synchronously (e.g., CO2 and Temperature).To solve these challenges, we propose a Deep Reinforcement learning based climate control method, which can model future reward explicitly. We further consider the fruit weight and the cost of the planting in order to improve the cumulative fruit weight and reduce the costs.Extensive experiments are conducted on the cucumber simulator environment have shown the superior performance of our methods.

Original languageEnglish
Title of host publicationProceedings - 11th IEEE International Conference on Knowledge Graph, ICKG 2020
EditorsEnhong Chen, Grigoris Antoniou, Xindong Wu, Vipin Kumar
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages474-480
Number of pages7
ISBN (Electronic)9781728181561
DOIs
StatePublished - Aug 2020
Event11th IEEE International Conference on Knowledge Graph, ICKG 2020 - Virtual, Online, China
Duration: 9 Aug 202011 Aug 2020

Publication series

NameProceedings - 11th IEEE International Conference on Knowledge Graph, ICKG 2020

Conference

Conference11th IEEE International Conference on Knowledge Graph, ICKG 2020
Country/TerritoryChina
CityVirtual, Online
Period9/08/2011/08/20

Keywords

  • Cucumber Climate Control
  • On policy Reinforcement Learning

Fingerprint

Dive into the research topics of 'Deep reinforcement learning for greenhouse climate control'. Together they form a unique fingerprint.

Cite this