DAFNet: Dynamic Auxiliary Fusion for Sequential Model Editing in Large Language Models

Taolin Zhang, Qizhou Chen, Dongyang Li, Chengyu Wang, Xiaofeng He, Longtao Huang, Hui Xue, Jun Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Recently, while large language models (LLMs) have demonstrated impressive results, they still suffer from hallucination, i.e., the generation of false information. Model editing is the task of fixing factual mistakes in LLMs; yet, most previous works treat it as a one-time task, paying little attention to ever-emerging mistakes generated by LLMs. We address the task of sequential model editing (SME) that aims to rectify mistakes continuously. A Dynamic Auxiliary Fusion Network (DAFNet) is designed to enhance the semantic interaction among the factual knowledge within the entire sequence, preventing catastrophic forgetting during the editing process of multiple knowledge triples. Specifically, (1) for semantic fusion within a relation triple, we aggregate the intra-editing attention flow into auto-regressive self-attention with token-level granularity in LLMs. We further leverage multi-layer diagonal inter-editing attention flow to update the weighted representations of the entire sequence-level granularity. (2) Considering that auxiliary parameters are required to store the knowledge for sequential editing, we construct a new dataset named DAFSet, fulfilling recent, popular, long-tail and robust properties to enhance the generality of sequential editing. Experiments show DAFNet significantly outperforms strong baselines in single-turn and sequential editing. The usage of DAFSet also consistently improves the performance of other auxiliary network-based methods in various scenarios.

Original languageEnglish
Title of host publicationThe 62nd Annual Meeting of the Association for Computational Linguistics
Subtitle of host publicationFindings of the Association for Computational Linguistics, ACL 2024
EditorsLun-Wei Ku, Andre Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages1558-1602
Number of pages45
ISBN (Electronic)9798891760998
DOIs
StatePublished - 2024
EventFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand
Duration: 11 Aug 202416 Aug 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

ConferenceFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityHybrid, Bangkok
Period11/08/2416/08/24

Fingerprint

Dive into the research topics of 'DAFNet: Dynamic Auxiliary Fusion for Sequential Model Editing in Large Language Models'. Together they form a unique fingerprint.

Cite this