TY - GEN
T1 - D2LLM
T2 - 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
AU - Liao, Zihan
AU - Yu, Hang
AU - Li, Jianguo
AU - Wang, Jun
AU - Zhang, Wei
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - The key challenge in semantic search is to create models that are both accurate and efficient in pinpointing relevant sentences for queries. While BERT-style bi-encoders excel in efficiency with pre-computed embeddings, they often miss subtle nuances in search tasks. Conversely, GPT-style LLMs with cross-encoder designs capture these nuances but are computationally intensive, hindering real-time applications. In this paper, we present D2LLMs-Decomposed and Distilled LLMs for semantic search-that combines the best of both worlds. We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module, achieving nuanced understanding and pre-computability. Knowledge from the LLM is distilled into this model using contrastive, rank, and feature imitation techniques. Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks, particularly improving NLI task performance by at least 6.45%. The source code is available at https://github.com/codefuse-ai/D2LLM.
AB - The key challenge in semantic search is to create models that are both accurate and efficient in pinpointing relevant sentences for queries. While BERT-style bi-encoders excel in efficiency with pre-computed embeddings, they often miss subtle nuances in search tasks. Conversely, GPT-style LLMs with cross-encoder designs capture these nuances but are computationally intensive, hindering real-time applications. In this paper, we present D2LLMs-Decomposed and Distilled LLMs for semantic search-that combines the best of both worlds. We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module, achieving nuanced understanding and pre-computability. Knowledge from the LLM is distilled into this model using contrastive, rank, and feature imitation techniques. Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks, particularly improving NLI task performance by at least 6.45%. The source code is available at https://github.com/codefuse-ai/D2LLM.
UR - https://www.scopus.com/pages/publications/85204432134
U2 - 10.18653/v1/2024.acl-long.791
DO - 10.18653/v1/2024.acl-long.791
M3 - 会议稿件
AN - SCOPUS:85204432134
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 14798
EP - 14814
BT - Long Papers
A2 - Ku, Lun-Wei
A2 - Martins, Andre F. T.
A2 - Srikumar, Vivek
PB - Association for Computational Linguistics (ACL)
Y2 - 11 August 2024 through 16 August 2024
ER -