Curriculum Prompt Learning with Self-Training for Abstractive Dialogue Summarization

Changqun Li, Linlin Wang, Xin Lin, Gerard de Melo, Liang He

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Succinctly summarizing dialogue is a task of growing interest, but inherent challenges, such as insufficient training data and low information density impede our ability to train abstractive models. In this work, we propose a novel curriculum-based prompt learning method with self-training to address these problems. Specifically, prompts are learned using a curriculum learning strategy that gradually increases the degree of prompt perturbation, thereby improving the dialogue understanding and modeling capabilities of our model. Unlabeled dialogue is incorporated by means of self-training so as to reduce the dependency on labeled data. We further investigate topic-aware prompts to better plan for the generation of summaries. Experiments confirm that our model substantially outperforms strong baselines and achieves new state-of-the-art results on the AMI and ICSI datasets. Human evaluations also show the superiority of our model with regard to the summary generation quality.

Original languageEnglish
Title of host publicationProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
EditorsYoav Goldberg, Zornitsa Kozareva, Yue Zhang
PublisherAssociation for Computational Linguistics (ACL)
Pages1096-1106
Number of pages11
ISBN (Electronic)9781959429401
DOIs
StatePublished - 2022
Event2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 - Hybrid, Abu Dhabi, United Arab Emirates
Duration: 7 Dec 202211 Dec 2022

Publication series

NameProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022

Conference

Conference2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityHybrid, Abu Dhabi
Period7/12/2211/12/22

Fingerprint

Dive into the research topics of 'Curriculum Prompt Learning with Self-Training for Abstractive Dialogue Summarization'. Together they form a unique fingerprint.

Cite this