TY - JOUR
T1 - Confined structure regulations of molybdenum oxides for efficient tumor photothermal therapy
AU - Qin, Limei
AU - Niu, Dechao
AU - Qin, Xing
AU - Sun, Qiqi
AU - Wen, Zicong
AU - Yu, Qili
AU - Li, Yongsheng
AU - Shi, Jianlin
N1 - Publisher Copyright:
© 2021, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2021/12
Y1 - 2021/12
N2 - Molybdenum oxide nanoparticles (NPs) with tunable plasmonic resonance in the near-infrared region display superior semiconducting features and photothermal properties, which are highly related to the crystalline and defective structures such as oxygen deficiencies. However, fundamental understanding on the structure-function relationship between crystalline/defective structures and photothermal properties is still unclear. To address this, herein, we have developed an “in-situ confined oxidation-reduction” strategy to regulate the defect features of molybdenum oxide NPs in the dual-mesoporous silica nanoreactor. Especially, the effects of crystalline structure/oxygen defects of molybdenum oxides on the photothermal performances were investigated by facilely tuning the amount of molybdenum resource and the reduction temperature. As a photothermal nanoagent, the optimal defective molybdenum oxide NPs encapsulated in PEGylated porous silica nanoreactor (designated as MoO3−x@PPSNs) exhibit excellent biological stability and strong localized surface plasmon resonance effect in near-infrared absorption range with the highest photothermal conversion efficiency up to 78.7% under 808 nm laser irradiation. More importantly, the remarkable photothermal effects of MoO3−xPPSNs were comprehensively demonstrated both in vitro and in vivo. Consequently, we envision that the plasmonic MoO3−x NPs in a biocompatible porous silica nano-reactor could be used as an efficient photothermal therapy agent for photothermal ablation of tumors.
AB - Molybdenum oxide nanoparticles (NPs) with tunable plasmonic resonance in the near-infrared region display superior semiconducting features and photothermal properties, which are highly related to the crystalline and defective structures such as oxygen deficiencies. However, fundamental understanding on the structure-function relationship between crystalline/defective structures and photothermal properties is still unclear. To address this, herein, we have developed an “in-situ confined oxidation-reduction” strategy to regulate the defect features of molybdenum oxide NPs in the dual-mesoporous silica nanoreactor. Especially, the effects of crystalline structure/oxygen defects of molybdenum oxides on the photothermal performances were investigated by facilely tuning the amount of molybdenum resource and the reduction temperature. As a photothermal nanoagent, the optimal defective molybdenum oxide NPs encapsulated in PEGylated porous silica nanoreactor (designated as MoO3−x@PPSNs) exhibit excellent biological stability and strong localized surface plasmon resonance effect in near-infrared absorption range with the highest photothermal conversion efficiency up to 78.7% under 808 nm laser irradiation. More importantly, the remarkable photothermal effects of MoO3−xPPSNs were comprehensively demonstrated both in vitro and in vivo. Consequently, we envision that the plasmonic MoO3−x NPs in a biocompatible porous silica nano-reactor could be used as an efficient photothermal therapy agent for photothermal ablation of tumors.
KW - confinement effect
KW - molybdenum oxide
KW - oxygen deficiency
KW - photothermal therapy
KW - porous silica nanoreactor
UR - https://www.scopus.com/pages/publications/85109286513
U2 - 10.1007/s40843-021-1692-1
DO - 10.1007/s40843-021-1692-1
M3 - 文章
AN - SCOPUS:85109286513
SN - 2095-8226
VL - 64
SP - 3087
EP - 3100
JO - Science China Materials
JF - Science China Materials
IS - 12
ER -