TY - JOUR
T1 - Conditional pseudo-supervised contrast for data-Free knowledge distillation
AU - Shao, Renrong
AU - Zhang, Wei
AU - Wang, Jun
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/11
Y1 - 2023/11
N2 - Data-free knowledge distillation (DFKD) is an effective manner to solve model compression and transmission restrictions while retaining privacy protection, which has attracted extensive attention in recent years. Currently, the majority of existing methods utilize a generator to synthesize images to support the distillation. Although the current methods have achieved great success, there are still many issues to be explored. Firstly, the outstanding performance of supervised learning in deep learning drives us to explore a pseudo-supervised paradigm on DFKD. Secondly, current synthesized methods cannot distinguish the distributions of different categories of samples, thus producing ambiguous samples that may lead to an incorrect evaluation by the teacher. Besides, current methods cannot optimize the category-wise diversity samples, which will hinder the student model learning from diverse samples and further achieving better performance. In this paper, to address the above limitations, we propose a novel learning paradigm, i.e., conditional pseudo-supervised contrast for data-free knowledge distillation (CPSC-DFKD). The primary innovations of CPSC-DFKD are: (1) introducing a conditional generative adversarial network to synthesize category-specific diverse images for pseudo-supervised learning, (2) improving the modules of the generator to distinguish the distributions of different categories, and (3) proposing pseudo-supervised contrastive learning based on teacher and student views to enhance diversity. Comprehensive experiments on three commonly-used datasets validate the performance lift of both the student and generator brought by CPSC-DFKD. The code is available at https://github.com/RoryShao/CPSC-DFKD.git
AB - Data-free knowledge distillation (DFKD) is an effective manner to solve model compression and transmission restrictions while retaining privacy protection, which has attracted extensive attention in recent years. Currently, the majority of existing methods utilize a generator to synthesize images to support the distillation. Although the current methods have achieved great success, there are still many issues to be explored. Firstly, the outstanding performance of supervised learning in deep learning drives us to explore a pseudo-supervised paradigm on DFKD. Secondly, current synthesized methods cannot distinguish the distributions of different categories of samples, thus producing ambiguous samples that may lead to an incorrect evaluation by the teacher. Besides, current methods cannot optimize the category-wise diversity samples, which will hinder the student model learning from diverse samples and further achieving better performance. In this paper, to address the above limitations, we propose a novel learning paradigm, i.e., conditional pseudo-supervised contrast for data-free knowledge distillation (CPSC-DFKD). The primary innovations of CPSC-DFKD are: (1) introducing a conditional generative adversarial network to synthesize category-specific diverse images for pseudo-supervised learning, (2) improving the modules of the generator to distinguish the distributions of different categories, and (3) proposing pseudo-supervised contrastive learning based on teacher and student views to enhance diversity. Comprehensive experiments on three commonly-used datasets validate the performance lift of both the student and generator brought by CPSC-DFKD. The code is available at https://github.com/RoryShao/CPSC-DFKD.git
KW - Contrastive learning
KW - Knowledge distillation
KW - Model compression
KW - Privacy protection
KW - Representation learning
UR - https://www.scopus.com/pages/publications/85165946718
U2 - 10.1016/j.patcog.2023.109781
DO - 10.1016/j.patcog.2023.109781
M3 - 文章
AN - SCOPUS:85165946718
SN - 0031-3203
VL - 143
JO - Pattern Recognition
JF - Pattern Recognition
M1 - 109781
ER -