TY - GEN
T1 - Compression of weighted graphs
AU - Toivonen, Hannu
AU - Zhou, Fang
AU - Hartikainen, Aleksi
AU - Hinkka, Atte
PY - 2011
Y1 - 2011
N2 - We propose to compress weighted graphs (networks), motivated by the observation that large networks of social, biological, or other relations can be complex to handle and visualize. In the process also known as graph simplification, nodes and (unweighted) edges are grouped to supernodes and superedges, respectively, to obtain a smaller graph. We propose models and algorithms for weighted graphs. The interpretation (i.e. decompression) of a compressed, weighted graph is that a pair of original nodes is connected by an edge if their supernodes are connected by one, and that the weight of an edge is approximated to be the weight of the superedge. The compression problem now consists of choosing supernodes, superedges, and superedge weights so that the approximation error is minimized while the amount of compression is maximized. In this paper, we formulate this task as the'simple weighted graph compression problem'. We then propose a much wider class of tasks under the name of'generalized weighted graph compression problem'. The generalized task extends the optimization to preserve longer-range connectivities between nodes, not just individual edge weights. We study the properties of these problems and propose a range of algorithms to solve them, with different balances between complexity and quality of the result. We evaluate the problems and algorithms experimentally on real networks. The results indicate that weighted graphs can be compressed efficiently with relatively little compression error.
AB - We propose to compress weighted graphs (networks), motivated by the observation that large networks of social, biological, or other relations can be complex to handle and visualize. In the process also known as graph simplification, nodes and (unweighted) edges are grouped to supernodes and superedges, respectively, to obtain a smaller graph. We propose models and algorithms for weighted graphs. The interpretation (i.e. decompression) of a compressed, weighted graph is that a pair of original nodes is connected by an edge if their supernodes are connected by one, and that the weight of an edge is approximated to be the weight of the superedge. The compression problem now consists of choosing supernodes, superedges, and superedge weights so that the approximation error is minimized while the amount of compression is maximized. In this paper, we formulate this task as the'simple weighted graph compression problem'. We then propose a much wider class of tasks under the name of'generalized weighted graph compression problem'. The generalized task extends the optimization to preserve longer-range connectivities between nodes, not just individual edge weights. We study the properties of these problems and propose a range of algorithms to solve them, with different balances between complexity and quality of the result. We evaluate the problems and algorithms experimentally on real networks. The results indicate that weighted graphs can be compressed efficiently with relatively little compression error.
KW - Compression
KW - Graph mining
KW - Network
KW - Weighted graph
UR - https://www.scopus.com/pages/publications/80052677864
U2 - 10.1145/2020408.2020566
DO - 10.1145/2020408.2020566
M3 - 会议稿件
AN - SCOPUS:80052677864
SN - 9781450308137
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 965
EP - 973
BT - Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11
PB - Association for Computing Machinery
T2 - 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011
Y2 - 21 August 2011 through 24 August 2011
ER -