TY - GEN
T1 - Co-attending free-form regions and detections with multi-modal multiplicative feature embedding for visual question answering
AU - Lu, Pan
AU - Li, Hongsheng
AU - Zhang, Wei
AU - Wang, Jianyong
AU - Wang, Xiaogang
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - Recently, the Visual Question Answering (VQA) task has gained increasing attention in artificial intelligence. Existing VQA methods mainly adopt the visual attention mechanism to associate the input question with corresponding image regions for effective question answering. The free-form region based and the detection-based visual attention mechanisms are mostly investigated, with the former ones attending free-form image regions and the latter ones attending pre-specified detection-box regions. We argue that the two attention mechanisms are able to provide complementary information and should be effectively integrated to better solve the VQA problem. In this paper, we propose a novel deep neural network for VQA that integrates both attention mechanisms. Our proposed framework effectively fuses features from free-form image regions, detection boxes, and question representations via a multi-modal multiplicative feature embedding scheme to jointly attend question-related free-form image regions and detection boxes for more accurate question answering. The proposed method is extensively evaluated on two publicly available datasets, COCO-QA and VQA, and outperforms state-of-the-art approaches. Source code is available at https://github.com/lupantech/dual-mfa-vqa.
AB - Recently, the Visual Question Answering (VQA) task has gained increasing attention in artificial intelligence. Existing VQA methods mainly adopt the visual attention mechanism to associate the input question with corresponding image regions for effective question answering. The free-form region based and the detection-based visual attention mechanisms are mostly investigated, with the former ones attending free-form image regions and the latter ones attending pre-specified detection-box regions. We argue that the two attention mechanisms are able to provide complementary information and should be effectively integrated to better solve the VQA problem. In this paper, we propose a novel deep neural network for VQA that integrates both attention mechanisms. Our proposed framework effectively fuses features from free-form image regions, detection boxes, and question representations via a multi-modal multiplicative feature embedding scheme to jointly attend question-related free-form image regions and detection boxes for more accurate question answering. The proposed method is extensively evaluated on two publicly available datasets, COCO-QA and VQA, and outperforms state-of-the-art approaches. Source code is available at https://github.com/lupantech/dual-mfa-vqa.
UR - https://www.scopus.com/pages/publications/85055702915
M3 - 会议稿件
AN - SCOPUS:85055702915
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 7218
EP - 7225
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -