TY - JOUR
T1 - Characteristics of the pollutant emissions in a tunnel of Shanghai on a weekday
AU - Li, Rui
AU - Meng, Ya
AU - Fu, Hongbo
AU - Zhang, Liwu
AU - Ye, Xingnan
AU - Chen, Jianmin
N1 - Publisher Copyright:
© 2017
PY - 2018/9
Y1 - 2018/9
N2 - Tunnel displays a typical semi-closed environment, and multitudes of the pollutants tend to accumulate. The samples of gaseous pollutants and particulate matter (PM) were collected from the Xiangyin tunnel at Shanghai to investigate the characteristics of the pollutant emissions. The results indicated that both gaseous pollutants and PM exhibited much higher concentrations during the rush hours in the morning and at night due to vehicle emission. Two peaks of the PM concentration were observed in the scope of 0.7‐1.1 and 3.3–4.7 μm, accounting for 14.6% and 20.3% of the total concentrations, respectively. Organic matter (OM), EC, and many water-soluble ions were markedly higher at the rush hours in the morning than those at night, implicating comprehensive effects of vehicle types and traffic volume. The particle number concentrations exhibited two peaks at Aitken mode (25 nm and 100 nm) and accumulation mode (600 nm), while the particle volume concentration displayed high values at the accumulation mode (100–500 nm) and coarse mode (2.5–4.0 μm). The peak around 100 nm was detected in the morning rush hours, but it diminished with the decrease of the traffic volume. Individual-particle analysis revealed that main particles in the tunnel were Fe-rich particles, K-rich particles, mineral particles, Ca–S rich particles and Al–Si particles. The particles collected at the rush hours displayed marked different morphologies, element concentrations and particle sizes compared to the ones collected at the non-rush period. The data presented herein could shed a light on the feature of vehicle emissions.
AB - Tunnel displays a typical semi-closed environment, and multitudes of the pollutants tend to accumulate. The samples of gaseous pollutants and particulate matter (PM) were collected from the Xiangyin tunnel at Shanghai to investigate the characteristics of the pollutant emissions. The results indicated that both gaseous pollutants and PM exhibited much higher concentrations during the rush hours in the morning and at night due to vehicle emission. Two peaks of the PM concentration were observed in the scope of 0.7‐1.1 and 3.3–4.7 μm, accounting for 14.6% and 20.3% of the total concentrations, respectively. Organic matter (OM), EC, and many water-soluble ions were markedly higher at the rush hours in the morning than those at night, implicating comprehensive effects of vehicle types and traffic volume. The particle number concentrations exhibited two peaks at Aitken mode (25 nm and 100 nm) and accumulation mode (600 nm), while the particle volume concentration displayed high values at the accumulation mode (100–500 nm) and coarse mode (2.5–4.0 μm). The peak around 100 nm was detected in the morning rush hours, but it diminished with the decrease of the traffic volume. Individual-particle analysis revealed that main particles in the tunnel were Fe-rich particles, K-rich particles, mineral particles, Ca–S rich particles and Al–Si particles. The particles collected at the rush hours displayed marked different morphologies, element concentrations and particle sizes compared to the ones collected at the non-rush period. The data presented herein could shed a light on the feature of vehicle emissions.
KW - Morphology
KW - Size distribution
KW - Tunnel
KW - Vehicle emission
UR - https://www.scopus.com/pages/publications/85047629336
U2 - 10.1016/j.jes.2017.11.015
DO - 10.1016/j.jes.2017.11.015
M3 - 文章
C2 - 30195673
AN - SCOPUS:85047629336
SN - 1001-0742
VL - 71
SP - 136
EP - 149
JO - Journal of Environmental Sciences (China)
JF - Journal of Environmental Sciences (China)
ER -