TY - JOUR
T1 - CD122 is an activation marker ensuring proper proliferation of T cells in teleost
AU - Geng, Ming
AU - Cao, Yi
AU - Li, Kang
AU - Rao, Wenzhuo
AU - Wang, Ding
AU - Cheng, Jie
AU - Zhang, Jiansong
AU - Yang, Jialong
AU - Wei, Xiumei
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/10
Y1 - 2024/10
N2 - As one of subunits for interleukin-2 receptor (IL-2R), CD122 can bind to IL-2 and then activate downstream signal transduction to participate in adaptive immune response. Although CD122 has been identified and investigated from several teleost species, studies on its function at T-cell level are still scarce for lack of specific antibodies. In this study, a typical CD122 in Nile tilapia (Oreochromis niloticus) was characterized by bioinformatics analysis, cloned to produce retrovirus infected NIH/3T3 cells for mouse immunization. After cell fusion and screening, we successfully developed a mouse anti-tilapia CD122 monoclonal antibody (mAb), which could specifically recognize CD122 and identify CD122-producing T cells of tilapia. Using the mAb to detect, CD122 was found to widely distribute in immune-related tissues, and significantly elevate post Edwardsiella piscicida infection or T-cell activation. More importantly, the expansion of CD122+ T cells and up-regulation of CD122 occurred both in total T cells and T-cell subsets during T-cell activation upon in vitro stimulation or in vivo infection. These results indicate that CD122 can be used as a T-cell activation marker in tilapia. Notably, CD122 mAb blocking blunted the activation of MAPK/Erk and mTORC1 pathways, and inhibited T-cell proliferation, suggesting a critical role of CD122 in ensuring proper proliferation of tilapia T cells. Therefore, this study enriches the knowledge of T-cell responses in fish and provides new evidence for understanding the evolution of lymphocyte-mediated adaptive immunity.
AB - As one of subunits for interleukin-2 receptor (IL-2R), CD122 can bind to IL-2 and then activate downstream signal transduction to participate in adaptive immune response. Although CD122 has been identified and investigated from several teleost species, studies on its function at T-cell level are still scarce for lack of specific antibodies. In this study, a typical CD122 in Nile tilapia (Oreochromis niloticus) was characterized by bioinformatics analysis, cloned to produce retrovirus infected NIH/3T3 cells for mouse immunization. After cell fusion and screening, we successfully developed a mouse anti-tilapia CD122 monoclonal antibody (mAb), which could specifically recognize CD122 and identify CD122-producing T cells of tilapia. Using the mAb to detect, CD122 was found to widely distribute in immune-related tissues, and significantly elevate post Edwardsiella piscicida infection or T-cell activation. More importantly, the expansion of CD122+ T cells and up-regulation of CD122 occurred both in total T cells and T-cell subsets during T-cell activation upon in vitro stimulation or in vivo infection. These results indicate that CD122 can be used as a T-cell activation marker in tilapia. Notably, CD122 mAb blocking blunted the activation of MAPK/Erk and mTORC1 pathways, and inhibited T-cell proliferation, suggesting a critical role of CD122 in ensuring proper proliferation of tilapia T cells. Therefore, this study enriches the knowledge of T-cell responses in fish and provides new evidence for understanding the evolution of lymphocyte-mediated adaptive immunity.
KW - Adaptive immunity
KW - CD122
KW - Monoclonal antibody
KW - Oreochromis niloticus
KW - T-cell activation
UR - https://www.scopus.com/pages/publications/85201433540
U2 - 10.1016/j.fsi.2024.109839
DO - 10.1016/j.fsi.2024.109839
M3 - 文章
C2 - 39153581
AN - SCOPUS:85201433540
SN - 1050-4648
VL - 153
JO - Fish and Shellfish Immunology
JF - Fish and Shellfish Immunology
M1 - 109839
ER -