TY - GEN
T1 - Byzantine-Resilient Federated Machine Learning via Over-the-Air Computation
AU - Huang, Shaoming
AU - Zhou, Yong
AU - Wang, Ting
AU - Shi, Yuanming
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/6
Y1 - 2021/6
N2 - Federated learning (FL) is recognized as a key enabling technology to provide intelligent services for future wireless networks and industrial systems with delay and privacy guarantees. However, the performance of wireless FL can be significantly degraded by Byzantine attack, such as data poisoning attack, model poisoning attack and free-riding attack. To design the Byzantine-resilient FL paradigm in wireless networks with limited radio resources, we propose a novel communication-efficient robust model aggregation scheme via over-the-air computation (AirComp). This is achieved by applying the Weiszfeld algorithm to obtain the smoothed geometric median aggregation against Byzantine attack. The additive structure of the Weiszfeld algorithm is further leveraged to match the signal superposition property of multiple-access channels via AirComp, thereby expediting the communication-efficient secure aggregation process of FL. Numerical results demonstrate the robustness against Byzantine devices and good learning performance of the proposed approach.
AB - Federated learning (FL) is recognized as a key enabling technology to provide intelligent services for future wireless networks and industrial systems with delay and privacy guarantees. However, the performance of wireless FL can be significantly degraded by Byzantine attack, such as data poisoning attack, model poisoning attack and free-riding attack. To design the Byzantine-resilient FL paradigm in wireless networks with limited radio resources, we propose a novel communication-efficient robust model aggregation scheme via over-the-air computation (AirComp). This is achieved by applying the Weiszfeld algorithm to obtain the smoothed geometric median aggregation against Byzantine attack. The additive structure of the Weiszfeld algorithm is further leveraged to match the signal superposition property of multiple-access channels via AirComp, thereby expediting the communication-efficient secure aggregation process of FL. Numerical results demonstrate the robustness against Byzantine devices and good learning performance of the proposed approach.
UR - https://www.scopus.com/pages/publications/85112834336
U2 - 10.1109/ICCWorkshops50388.2021.9473694
DO - 10.1109/ICCWorkshops50388.2021.9473694
M3 - 会议稿件
AN - SCOPUS:85112834336
T3 - 2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021 - Proceedings
BT - 2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021
Y2 - 14 June 2021 through 23 June 2021
ER -