TY - JOUR
T1 - Bragg diffraction of a matter wave driven by a pulsed nonuniform magnetic field
AU - Zhai, Yueyang
AU - Zhang, Peng
AU - Chen, Xuzong
AU - Dong, Guangjiong
AU - Zhou, Xiaoji
PY - 2013/11/25
Y1 - 2013/11/25
N2 - We have performed a principle-proof experiment of a magneto-optical diffraction (MOD) technique that requires no energy level splitting by a homogeneous magnetic field and a circularly polarized optical lattice, avoiding system errors in an interferometer based on the MOD. The principle for this MOD is that asynchronized switching of the quadrupole trap and the Ioffe trap in a quadrupole-Ioffe-configuration trap can generate a residual magnetic force to drive a Bose-Einstein condensate (BEC) to move. We have observed asymmetric atomic diffraction resulting from the asymmetric distribution of the Bloch eigenstates involved in the diffraction process when the condensate is driven by such a force, and matter-wave self-imaging due to coherent population oscillation of the dominantly occupied Bloch eigenstates. We have classified the mechanisms that lead to symmetric or asymmetric diffraction and found that our experiment presents a magnetic alternative to a moving optical lattice, with a great potential to achieve a very large momentum transfer (>110âk) to a BEC using well-developed magnetic trapping techniques.
AB - We have performed a principle-proof experiment of a magneto-optical diffraction (MOD) technique that requires no energy level splitting by a homogeneous magnetic field and a circularly polarized optical lattice, avoiding system errors in an interferometer based on the MOD. The principle for this MOD is that asynchronized switching of the quadrupole trap and the Ioffe trap in a quadrupole-Ioffe-configuration trap can generate a residual magnetic force to drive a Bose-Einstein condensate (BEC) to move. We have observed asymmetric atomic diffraction resulting from the asymmetric distribution of the Bloch eigenstates involved in the diffraction process when the condensate is driven by such a force, and matter-wave self-imaging due to coherent population oscillation of the dominantly occupied Bloch eigenstates. We have classified the mechanisms that lead to symmetric or asymmetric diffraction and found that our experiment presents a magnetic alternative to a moving optical lattice, with a great potential to achieve a very large momentum transfer (>110âk) to a BEC using well-developed magnetic trapping techniques.
UR - https://www.scopus.com/pages/publications/84890341971
U2 - 10.1103/PhysRevA.88.053629
DO - 10.1103/PhysRevA.88.053629
M3 - 文章
AN - SCOPUS:84890341971
SN - 1050-2947
VL - 88
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 5
M1 - 053629
ER -